

Review

Gap theorem

 $TIME(f(n)) = TIME(2^{f(n)})$

Theorem

Proof Idea

Define

Relations

There is a computable function $f: \mathbb{N} \to \mathbb{N}$ such that

 \rightarrow observe *f* is recursive, not time constructible

assume some enumeration of all TMs

f(n) = the least m such that for all $i \leq n$

Reachability Method Review

Reachability Method

65

Reviev

Reachability Method

Relations between Complexity Classes

Theorem

```
NTIME(.) \rightarrow SPACE(.)
```

Let f(n) be a time and space constructible function; then **NTIME** $(f(n)) \subseteq$ **SPACE**(f(n)).

Proof Idea

⇒ simulation of the computation tree needs at most f(n) space_

Theorem

$NSPACE(.) \rightarrow TIME(.)$

Suppose f(n) is space constructible; then

$$\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)}) \ (= \bigcup_{d>0} \mathsf{TIME}(d^{\log n + f(n)}))$$

LVA 703608 (week 6

Relations

- Proof Idea
- use reachability method

GM

Review

GM

Relations

if $T_i(x) \leq 2^m$, for some input x with |x| = n, then also $T_i(x) \leq m$

 \rightarrow define a function f such that no TM, computing on input on

 \blacksquare let $T_i(x)$ denote the running time of TM M_i on input x

length n, halts after more than f(n) but less than $2^{f(n)}$ steps

Review: Configurations

Consider the following TM ${\it M}$

$p \in K$	$\sigma\in \Sigma$	$\delta(\pmb{p},\sigma)$
S	0	$(s, 0, \rightarrow)$
S	1	(s,1, ightarrow)
5		(q,\sqcup,\leftarrow)
S	\triangleright	$(s, \triangleright, ightarrow)$
q	0	(h,1,-)
q	1	$(q,0,\leftarrow)$
q	\triangleright	$(h, \triangleright, ightarrow)$

Then $(s, \triangleright 1, 1011)$ is a configuration and we have for example

$$(s, \triangleright 11, 1) \xrightarrow{\mathsf{M}^3} (q, \triangleright 111, \sqcup$$

Reachability Method

Proposition

Consider a TM (deterministic or nondeterministic) deciding a language L so that the number of possible configurations is $\leq f(n)$. Assume further, we can decide in time g(n) that one configuration yields another.

Then $L \in TIME(\mathcal{O}(f(n)^2 \cdot g(n)))$.

Definition

configuration graph

- Let M be a TM; the configuration graph on input x, written G(M, x) is defined as follows:
 - 1 the sets of nodes is the set of all possible configurations
 - **2** let C_1, C_2 be two configurations

 \exists edge between C_1 and C_2 in G(M, x) iff $C_1 \stackrel{M}{\longrightarrow} C_2$

LVA 703608 (week 6)

LVA 703608 (week 6)

LVA 703608 (week 6)

72

