Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

Reductions

75

GM LVA 703608 (week 7)
Savitch's Theorem Satisfiability Hamilton Path

Savitch's Theorem

Lemma

 $\mathsf{REACHABILITY} \in \mathbf{SPACE}(\log^2 n)$

Proof Idea

the deterministic algorithm (for REACHABILITY) we used before needs linear space. To improve one uses a similar divide & conquer approach as in quicksort.

Theorem

if f is space constructible, then $NSPACE(f(n)) \subseteq SPACE(f^2(n))$

Corollary

- PSPACE = NPSPACE
- **2** NSPACE(f(n)) = coNSPACE(f(n)) Immerman-Szelepsényi

we suppose f is space constructible

GM LVA 703608 (week 7)

Satisfiability

Definition

a Boolean expression φ is built up from Boolean variables $X = \{x_1, x_2, \ldots\}$ and truth values **true**, **false**, by the unary operation \neg and the binary operations \lor and \land

- ightharpoonup a map $T: X' \to \{ true, false \} (X' \subseteq X, X' finite) is a <math>(truth)$ assignment
- ightharpoonup we call T appropriate for φ if X' contains all variables in φ .
- ightharpoonup we write $T \models \varphi$ if T satisfies φ .
- ightharpoonup we say arphi is $\operatorname{\mathsf{valid}}$ if arphi is satisfied by all assignments Tappropriate for φ .

Theorem

a Boolean expression φ is unsatisfiable iff its negation $\neg \varphi$ is valid

GM LVA 703608 (week 7)

Savitch's Theorem Satisfiability Hamilton Path Reductions

Conjunctive Normal Form

a Boolean expression φ is in conjunctive normal form (CNF) if

$$\varphi \equiv \bigwedge_{i=1}^n C_i ,$$

where $n \ge 1$, and each C_i is the disjunction of one or more literals

 $ightharpoonup C_i$ is also called a clause

Example **CNF**

$$((x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_1) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3))$$

is an expression in CNFthat is unsatisfiable

77

Theorem

every Boolean expression is equivalent to one in CNF (or DNF), but the CNF is not unique

Example

non-uniqueness

$$x \equiv (x \lor x) \equiv (x \lor x) \land (y \lor \neg y)$$

Representation

a Boolean expression is represented as a string over an alphabet containing $x, 0, 1, (,), \neg, \vee, \wedge$

GM TI

LVA 703608 (week 7)

10

Savitch's Theorem

Satisfiability

Hamilton Path

Reductions

Problem SAT

SAT

given a Boolean expression φ in CNF, is φ satisfiable?

Complexity

- → we know many ways to decide the language SAT, e.g. truth tables, OBDDs, resolution, etc.
- still in the worst case all these algorithms are exponential
- \rightarrow we only know SAT \in **TIME** (2^n)

Lemma

 $SAT \in NP$

Proof

- use characterisation via polynomial verifier
- use the assignment as certificate

LVA 703608 (week 7)

Savitch's Theorem Satisfiability Hamilton Path Reductions

Problem HORNSAT

HORNSAT

given a Boolean expression φ that is a Horn formula in CNF, is it satisfiable?

Definition Horn formulas

→ a Horn clause is a clause that has at most one positive literal.

Example:

$$(\neg x_2 \lor x_3)$$
, $(\neg x_1 \lor \neg x_2 \lor \neg x_3)$ are Horn clauses

a Boolean expression is a Horn formula if equivalent to a CNF where all clauses are Horn

Complexity

 $HORNSAT \in \mathbf{P}$

GM LVA 703608 (week 7) 80

Savitch's Theorem Satisfiability Hamilton Path Reductions

Boolean function

an n-ary Boolean function is a function

$$f: \{\mathsf{true}, \mathsf{false}\}^n \to \{\mathsf{true}, \mathsf{false}\}$$

Fact

any expression φ can be conceived as an n-ary Boolean function if φ has n (distinct) variables

Proof

suppose $\{x_1, \ldots, x_n\}$ occur in φ ; let $\vec{t} = (t_1, \ldots, t_n)$ be truth values; assume for the assignment T, $T(x_i) = t_i$. Set

$$f(\vec{t}) := \begin{cases} \mathbf{true} & \text{if} \quad T \models \varphi \\ \mathbf{false} & \text{if} \quad T \not\models \varphi \end{cases}$$

Fact

any n-ary Boolean function f can be expressed as a Boolean expression involving x_1, \ldots, x_n

GM LVA 703608 (week 7)

81

Boolean circuit (1)

$$(x_3 \land \neg((x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2))) \lor (\neg x_3 \land (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2))$$

Savitch's Theorem Satisfiability Hamilton Path Reductions

Boolean circuit (2)

Definition Boolean circuit

a Boolean circuit is a graph C = (V, E), such that the nodes $V = \{1, ..., n\}$ are called gates

- 1 there are no cycles in C. Hence we can write all edges as (i,j), where i < j
- 2 the indegrees of the gates are 0,1, or 2
- **3** each gate has a sort from $\{\mathbf{true}, \mathbf{false}, \neg, \lor, \land\} \cup \{x_1, x_2, \ldots\}$:
 - → if the sort of the gate is from $\{true, false\} \cup \{x_1, x_2, ...\}$, then it is an input gate and has no incoming edges
 - → if the sort is ¬, then the indegree is 1
 - \rightarrow if the sort is from $\{\vee, \wedge\}$, then the indegree is 2
- 4 the node *n* is called output gate.

Value of a Circuit

- \rightarrow we write s(i), for the sort of gate i
- \rightarrow let X(C) be the set of all variables occurring in the circuit C
- \rightarrow an assignment T is appropriate for C, if defined for all variables in X(C)
- \rightarrow given T, the truth value of gate j, T(j) is defined as follows:
 - **1** T(j) := true, if s(j) = true
 - T(i) :=false, if s(i) =false
 - **3** $T(j) := T(s(j)), \text{ if } s(j) \in X$
 - **4** T(j) = not T(i), if $s(j) = \neg \text{ and } (i,j) \in E$
 - **5** $T(j) = T(i_1)$ or $T(i_2)$, if $s(j) = \vee$ and $(i_1, j), (i_2, j) \in E$
 - **6** $T(j) = T(i_1)$ and $T(i_2)$, if $s(j) = \wedge$ and $(i_1, j), (i_2, j) \in E$
- \rightarrow the value of C (written T(C)) is defined as T(n), where n is the output gate

GM LVA 703608 (week 7)

Satisfiability Hamilton Path Savitch's Theorem Reductions

CIRCUIT SAT

given a circuit C, is there a truth assignment T appropriate for Cso that T(C) = true?

CIRCUIT VALUE

given a variable-free circuit C, is T(C) = true?

HAMILTON PATH

given a (directed) graph. Is there a path that visit every node exactly once?

LVA 703608 (week 7)

GM

Reduction (1)

Complexity

the problem HAMILTON PATH is in NP

Definition

→ a reduction is a procedures that solves a computational problem A by transforming any instance of A to an equivalent instance of a previously solved problem

Example

we reduced MAX FLOW to REACHABILITY

Definition reduction

 \rightarrow algorithm A reduces to B if there exists a transformation R which, for every input x of A, produces an equivalent input R(x) of B

Fact

if A reduces to B, then B is not easier than A

LVA 703608 (week 7) Savitch's Theorem

GM

Satisfiability

Hamilton Path

Reductions

Reduction (2)

Definition

logspace-reductions

 L_1 is reducible to L_2 if

- \blacksquare exists a function R from strings to strings
- **3** for all *x*:

$$x \in L_1$$
 iff $R(x) \in L_2$.

Theorem

if R is a (logspace-) reduction computed by a TM M, then for all inputs x, M halts after a polynomial number of steps

Proof

 $L \subset P$

87

Reduction: HAMILTON PATH → SAT

suppose G has n nodes; the formula R(G) will have n^2 Boolean variables x_{ij} ; variable x_{ij} represents that node j is the ith node in the Hamilton path

Clauses of R(G)

- \rightarrow $(x_{1j} \lor \cdots \lor x_{nj})$, expressing that node j occurs in the path.
- $\neg (x_{ij} \land x_{kj})$ for all $i, k, i \neq k$. This gives the clause $(\neg x_{ij} \lor \neg x_{kj})$
- $(x_{i1} \lor \cdots \lor x_{in})$, expressing that some node occurs at the *i*th position in the path.
- $\rightarrow \neg(x_{ij} \land x_{ik})$ for all $j, k, j \neq k$. Gives $(\neg x_{ij} \lor \neg x_{ik})$
- $\neg (x_{ki} \land x_{k+1,j})$ for each $(i,j) \in G$ which is not an edge. Gives: $\neg x_{ki} \lor \neg x_{k+1,j}$

R(G) is the conjunction of all these clauses

GM LVA 703608 (week 7) 88
Savitch's Theorem Satisfiability Hamilton Path Reductions

Proof (1)

Theorem

R is a reduction from HAMILTON PATH to SAT.

R(G) is satisfied by T implies that G has a Hamilton path

- 1 for each i there exists a unique j so that $T(x_{ij}) = \mathbf{true}$.
- 2 for each j there exists a unique i so that $T(x_{ij}) = \mathbf{true}$.
- 3 i.e., there exists a permutation $(\pi(1), \ldots, \pi(n))$, where $\pi(i) = j$ iff $T(x_{ij}) = \mathbf{true}$.
- 4 by the last group of clauses $(\pi(1), \ldots, \pi(n))$ is a path in G

G has a Hamilton path implies that R(G) is satisfiable

- **1** suppose that $(\pi(1), \ldots, \pi(n))$ is a Hamilton path.
- 2 set $T(x_{ij}) =$ true iff $\pi(i) = j$.

Savitch's Theorem Satisfiability Hamilton Path Reductions

Proof (2)

R is computable in space $\mathcal{O}(\log n)$

- 1 generate the first four groups of clauses, this depends only on n
- 2 needs 3 counters i, j, k for the indices of the variables
- **3** generate all clauses of the form $(\neg x_{ki} \lor \neg x_{k+1,j})$; reusing space
- 4 test for each clause $(\neg x_{ki} \lor \neg x_{k+1,j})$ whether there exists an edge $(i,j) \in G$ or not

GM LVA 703608 (week 7) 90