Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

Savitch's Theorem

Lemma
REACHABILITY $\in \operatorname{SPACE}\left(\log ^{2} n\right)$
Proof Idea
the deterministic algorithm (for REACHABILITY) we used before needs linear space. To improve one uses a similar divide \& conquer approach as in quicksort.

Theorem

if f is space constructible, then $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$

Corollary

1 PSPACE = NPSPACE
$2 \operatorname{NSPACE}(f(n))=\operatorname{coNSPACE}(f(n))$ Immerman-Szelepsényi
we suppose f is space constructible

Satisfiability

Definition
a Boolean expression φ is built up from Boolean variables $X=\left\{x_{1}, x_{2}, \ldots\right\}$ and truth values true, false, by the unary operation \neg and the binary operations \vee and \wedge
\Rightarrow a map $T: X^{\prime} \rightarrow\{$ true, false $\}\left(X^{\prime} \subseteq X, X^{\prime}\right.$ finite $)$ is a (truth) assignment
\Rightarrow we call T appropriate for φ if X^{\prime} contains all variables in φ.
\Rightarrow we write $T \models \varphi$ if T satisfies φ.
\Rightarrow we say φ is valid if φ is satisfied by all assignments T appropriate for φ.

Theorem

a Boolean expression φ is unsatisfiable iff its negation $\neg \varphi$ is valid

Conjunctive Normal Form

\Rightarrow a Boolean expression φ is in conjunctive normal form (CNF) if

$$
\varphi \equiv \bigwedge_{i=1}^{n} c_{i}
$$

where $n \geqslant 1$, and each C_{i} is the disjunction of one or more literals
$\Rightarrow C_{i}$ is also called a clause

Example

$$
\left(\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)\right)
$$

is an expression in CNFthat is unsatisfiable

Theorem

every Boolean expression is equivalent to one in CNF (or DNF), but the CNF is not unique

Example non-uniqueness

$$
x \equiv(x \vee x) \equiv(x \vee x) \wedge(y \vee \neg y)
$$

Representation
a Boolean expression is represented as a string over an
alphabet containing $x, 0,1,(),, \neg, \vee, \wedge$

Problem SAT

SAT

given a Boolean expression φ in CNF, is φ satisfiable?
Complexity
\Rightarrow we know many ways to decide the language SAT, e.g. truth tables, OBDDs, resolution, etc.
\Rightarrow still in the worst case all these algorithms are exponential
\Rightarrow we only know SAT $\in \operatorname{TIME}\left(2^{n}\right)$

Lemma

SAT $\in \mathbf{N P}$

Proof

\Rightarrow use characterisation via polynomial verifier

- use the assignment as certificate

Problem HORNSAT

HORNSAT

given a Boolean expression φ that is a Horn formula in CNF, is it satisfiable?

Definition

\Rightarrow a Horn clause is a clause that has at most one positive literal. Example:

$$
\left(\neg x_{2} \vee x_{3}\right),\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \text { are Horn clauses }
$$

\Rightarrow a Boolean expression is a Horn formula if equivalent to a CNF where all clauses are Horn

Complexity
 HORNSAT $\in \mathbf{P}$

Boolean function

an n-ary Boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \text { false }\}
$$

Fact

any expression φ can be conceived as an n-ary Boolean function if φ has n (distinct) variables

Proof

suppose $\left\{x_{1}, \ldots, x_{n}\right\}$ occur in φ; let $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$ be truth values; assume for the assignment $T, T\left(x_{i}\right)=t_{i}$. Set

$$
f(\vec{t}):=\left\{\begin{array}{lll}
\text { true } & \text { if } & T \models \varphi \\
\text { false } & \text { if } & T \nLeftarrow \varphi
\end{array}\right.
$$

Fact

any n-ary Boolean function f can be expressed as a Boolean expression involving x_{1}, \ldots, x_{n}

Boolean circuit (1)

$$
\left(x_{3} \wedge \neg\left(\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)\right)\right) \vee\left(\neg x_{3} \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)\right)
$$

$((($ true \wedge false $) \vee \neg$ false $) \wedge$ false $)$

Boolean circuit (2)

Definition
Boolean circuit
a Boolean circuit is a graph $C=(V, E)$, such that the nodes $V=\{1, \ldots, n\}$ are called gates

1 there are no cycles in C. Hence we can write all edges as (i, j), where $i<j$
2 the indegrees of the gates are 0,1 , or 2
3 each gate has a sort from $\{$ true, false, $\neg, \vee, \wedge\} \cup\left\{x_{1}, x_{2}, \ldots\right\}$:
\Rightarrow if the sort of the gate is from $\{$ true, false $\} \cup\left\{x_{1}, x_{2}, \ldots\right\}$, then it is an input gate and has no incoming edges

- if the sort is \neg, then the indegree is 1
- if the sort is from $\{\vee, \wedge\}$, then the indegree is 2

4 the node n is called output gate.

Value of a Circuit

\Rightarrow we write $s(i)$, for the sort of gate i
\Rightarrow let $X(C)$ be the set of all variables occurring in the circuit C
\Rightarrow an assignment T is appropriate for C, if defined for all variables in $X(C)$
\Rightarrow given T, the truth value of gate $j, T(j)$ is defined as follows:
$1 T(j):=$ true, if $s(j)=$ true
$2 T(j):=$ false, if $s(j)=$ false
$3 T(j):=T(s(j))$, if $s(j) \in X$
$4 T(j)=\operatorname{not} T(i)$, if $s(j)=\neg$ and $(i, j) \in E$
$5 T(j)=T\left(i_{1}\right)$ or $T\left(i_{2}\right)$, if $s(j)=\vee$ and $\left(i_{1}, j\right),\left(i_{2}, j\right) \in E$
$6 T(j)=T\left(i_{1}\right)$ and $T\left(i_{2}\right)$, if $s(j)=\wedge$ and $\left(i_{1}, j\right),\left(i_{2}, j\right) \in E$
\Rightarrow the value of $C($ written $T(C))$ is defined as $T(n)$, where n is the output gate

CIRCUIT SAT

given a circuit C, is there a truth assignment T appropriate for C so that $T(C)=$ true?

CIRCUIT VALUE

given a variable-free circuit C, is $T(C)=$ true?

HAMILTON PATH

given a (directed) graph. Is there a path that visit every node exactly once?

Reduction (1)

Complexity
the problem HAMILTON PATH is in NP

Definition

\Rightarrow a reduction is a procedures that solves a computational problem A by transforming any instance of A to an equivalent instance of a previously solved problem

Example
we reduced MAX FLOW to REACHABILITY
Definition
reduction

- algorithm A reduces to B if there exists a transformation R which, for every input x of A, produces an equivalent input $R(x)$ of B

Fact

if A reduces to B, then B is not easier than A

Reduction (2)

Definition
L_{1} is reducible to L_{2} if
1 exists a function R from strings to strings
2 computable by a deterministic TM in space $\mathcal{O}(\log n)$ such that
3 for all x :

$$
x \in \mathrm{~L}_{1} \quad \text { iff } \quad R(x) \in \mathrm{L}_{2} .
$$

Theorem
if R is a (logspace-) reduction computed by a TM M , then for all inputs x, M halts after a polynomial number of steps

Proof

$\mathbf{L} \subseteq \mathbf{P}$

Reduction: HAMILTON PATH \rightarrow SAT

suppose G has n nodes; the formula $R(G)$ will have n^{2} Boolean variables $x_{i j}$; variable $x_{i j}$ represents that node j is the i th node in the Hamilton path

Clauses of $R(G)$

$\Rightarrow\left(x_{1 j} \vee \cdots \vee x_{n j}\right)$, expressing that node j occurs in the path.
$\Rightarrow \neg\left(x_{i j} \wedge x_{k j}\right)$ for all $i, k, i \neq k$. This gives the clause $\left(\neg x_{i j} \vee \neg x_{k j}\right)$
$\Rightarrow\left(x_{i 1} \vee \cdots \vee x_{i n}\right)$, expressing that some node occurs at the i th position in the path.
$\Rightarrow \neg\left(x_{i j} \wedge x_{i k}\right)$ for all $j, k, j \neq k$. Gives $\left(\neg x_{i j} \vee \neg x_{i k}\right)$
$\Rightarrow \neg\left(x_{k i} \wedge x_{k+1, j}\right)$ for each $(i, j) \in G$ which is not an edge. Gives: $\neg x_{k i} \vee \neg x_{k+1, j}$
$R(G)$ is the conjunction of all these clauses

Proof (1)

Theorem

R is a reduction from HAMILTON PATH to SAT.
$R(G)$ is satisfied by T implies that G has a Hamilton path
1 for each i there exists a unique j so that $T\left(x_{i j}\right)=$ true.
2 for each j there exists a unique i so that $T\left(x_{i j}\right)=$ true.
3 i.e., there exists a permutation $(\pi(1), \ldots, \pi(n))$, where $\pi(i)=j$ iff $T\left(x_{i j}\right)=$ true.
4 by the last group of clauses $(\pi(1), \ldots, \pi(n))$ is a path in G
G has a Hamilton path implies that $R(G)$ is satisfiable
1 suppose that $(\pi(1), \ldots, \pi(n))$ is a Hamilton path.
2 set $T\left(x_{i j}\right)=$ true iff $\pi(i)=j$.

Proof (2)

R is computable in space $\mathcal{O}(\log n)$

1 generate the first four groups of clauses, this depends only on n

2 needs 3 counters i, j, k for the indices of the variables
3 generate all clauses of the form $\left(\neg x_{k i} \vee \neg x_{k+1, j}\right)$; reusing space
4 test for each clause $\left(\neg x_{k i} \vee \neg x_{k+1, j}\right)$ whether there exists an edge $(i, j) \in G$ or not

