
Savitch’s Theorem Satisfiability Hamilton Path Reductions

Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

GM LVA 703608 (week 7) 1

Savitch’s Theorem Satisfiability Hamilton Path Reductions

Savitch’s Theorem

Lemma
REACHABILITY ∈ SPACE(log2 n)

Proof Idea
the deterministic algorithm (for REACHABILITY) we used before
needs linear space. To improve one uses a similar divide & conquer
approach as in quicksort.

Theorem Savitch
if f is space constructible, then NSPACE(f (n)) ⊆ SPACE(f 2(n))

Corollary

1 PSPACE = NPSPACE

2 NSPACE(f (n)) = coNSPACE(f (n)) Immerman-Szelepsényi

we suppose f is space constructible
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Satisfiability

Definition
a Boolean expression ϕ is built up from Boolean variables
X = {x1, x2, . . .} and truth values true, false, by the unary
operation ¬ and the binary operations ∨ and ∧

á a map T : X ′ → {true, false} (X ′ ⊆ X , X ′ finite) is a (truth)
assignment

á we call T appropriate for ϕ if X ′ contains all variables in ϕ.

á we write T |= ϕ if T satisfies ϕ.

á we say ϕ is valid if ϕ is satisfied by all assignments T
appropriate for ϕ.

Theorem
a Boolean expression ϕ is unsatisfiable iff its negation ¬ϕ is valid
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Conjunctive Normal Form

á a Boolean expression ϕ is in conjunctive normal form (CNF) if

ϕ ≡
n∧

i=1

Ci ,

where n > 1, and each Ci is the disjunction of one or more
literals

á Ci is also called a clause

Example CNF

((x1∨x2∨x3)∧(x1∨¬x2)∧(x2∨¬x3)∧(x3∨¬x1)∧(¬x1∨¬x2∨¬x3))

is an expression in CNFthat is unsatisfiable
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Theorem
every Boolean expression is equivalent to one in CNF (or DNF),
but the CNF is not unique

Example non-uniqueness

x ≡ (x ∨ x) ≡ (x ∨ x) ∧ (y ∨ ¬y)

Representation
a Boolean expression is represented as a string over an
alphabet containing x , 0, 1, (, ),¬,∨,∧
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Problem SAT

SAT
given a Boolean expression ϕ in CNF, is ϕ satisfiable?

Complexity

á we know many ways to decide the language SAT, e.g. truth
tables, OBDDs, resolution, etc.

á still in the worst case all these algorithms are exponential

á we only know SAT ∈ TIME(2n)

Lemma
SAT ∈ NP

Proof
á use characterisation via polynomial verifier

á use the assignment as certificate
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Problem HORNSAT

HORNSAT
given a Boolean expression ϕ that is a Horn formula in CNF, is it
satisfiable?

Definition Horn formulas

á a Horn clause is a clause that has at most one positive literal.

Example:

(¬x2 ∨ x3), (¬x1 ∨ ¬x2 ∨ ¬x3) are Horn clauses

á a Boolean expression is a Horn formula if equivalent to a CNF

where all clauses are Horn

Complexity
HORNSAT ∈ P
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Boolean function
an n-ary Boolean function is a function

f : {true, false}n → {true, false}

Fact
any expression ϕ can be conceived as an n-ary Boolean function if
ϕ has n (distinct) variables

Proof
suppose {x1, . . . , xn} occur in ϕ; let ~t = (t1, . . . , tn) be truth
values; assume for the assignment T , T (xi ) = ti . Set

f (~t) :=

{
true if T |= ϕ

false if T 6|= ϕ

Fact
any n-ary Boolean function f can be expressed as a Boolean
expression involving x1, . . . , xn
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Boolean circuit (1)

x1 x2 x3

¬ ∨ ¬ ¬

∨

∧

¬

∧ ∧

∨

(x3 ∧ ¬((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2))) ∨ (¬x3 ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2))

true false false

∧ ¬

∨

∧

(((true ∧ false) ∨ ¬false) ∧ false)
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Boolean circuit (2)

Definition Boolean circuit

a Boolean circuit is a graph C = (V ,E ), such that the nodes
V = {1, . . . , n} are called gates

1 there are no cycles in C . Hence we can write all edges as
(i , j), where i < j

2 the indegrees of the gates are 0,1, or 2

3 each gate has a sort from {true, false,¬,∨,∧}∪{x1, x2, . . .}:
á if the sort of the gate is from {true, false} ∪ {x1, x2, . . .},

then it is an input gate and has no incoming edges

á if the sort is ¬, then the indegree is 1

á if the sort is from {∨,∧}, then the indegree is 2

4 the node n is called output gate.

GM LVA 703608 (week 7) 83

Savitch’s Theorem Satisfiability Hamilton Path Reductions

Value of a Circuit

á we write s(i), for the sort of gate i

á let X (C ) be the set of all variables occurring in the circuit C

á an assignment T is appropriate for C , if defined for all
variables in X (C )

á given T , the truth value of gate j , T (j) is defined as follows:

1 T (j) := true, if s(j) = true

2 T (j) := false, if s(j) = false

3 T (j) := T (s(j)), if s(j) ∈ X

4 T (j) = not T (i), if s(j) = ¬ and (i , j) ∈ E

5 T (j) = T (i1) or T (i2), if s(j) = ∨ and (i1, j), (i2, j) ∈ E

6 T (j) = T (i1) and T (i2), if s(j) = ∧ and (i1, j), (i2, j) ∈ E

á the value of C (written T (C )) is defined as T (n), where n is
the output gate
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CIRCUIT SAT
given a circuit C , is there a truth assignment T appropriate for C
so that T (C ) = true?

CIRCUIT VALUE
given a variable-free circuit C , is T (C ) = true?

HAMILTON PATH
given a (directed) graph. Is there a path that visit every node
exactly once?
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Reduction (1)

Complexity
the problem HAMILTON PATH is in NP

Definition
á a reduction is a procedures that solves a computational

problem A by transforming any instance of A to an equivalent
instance of a previously solved problem

Example
we reduced MAX FLOW to REACHABILITY

Definition reduction

á algorithm A reduces to B if there exists a transformation R
which, for every input x of A, produces an equivalent input
R(x) of B

Fact
if A reduces to B, then B is not easier than A
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Reduction (2)

Definition logspace-reductions
L1 is reducible to L2 if

1 exists a function R from strings to strings

2 computable by a deterministic TM in space O(log n) such that

3 for all x :
x ∈ L1 iff R(x) ∈ L2 .

Theorem
if R is a (logspace-) reduction computed by a TM M, then for all
inputs x , M halts after a polynomial number of steps

Proof
L ⊆ P
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Reduction: HAMILTON PATH → SAT

suppose G has n nodes; the formula R(G ) will have n2 Boolean
variables xij ; variable xij represents that node j is the ith node in
the Hamilton path

Clauses of R(G )

á (x1j ∨ · · · ∨ xnj), expressing that node j occurs in the path.

á ¬(xij ∧ xkj) for all i , k, i 6= k. This gives the clause
(¬xij ∨ ¬xkj)

á (xi1 ∨ · · · ∨ xin), expressing that some node occurs at the ith
position in the path.

á ¬(xij ∧ xik) for all j , k, j 6= k. Gives (¬xij ∨ ¬xik)

á ¬(xki ∧ xk+1,j) for each (i , j) ∈ G which is not an edge. Gives:
¬xki ∨ ¬xk+1,j

R(G ) is the conjunction of all these clauses
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Proof (1)

Theorem
R is a reduction from HAMILTON PATH to SAT.

R(G ) is satisfied by T implies that G has a Hamilton path

1 for each i there exists a unique j so that T (xij) = true.

2 for each j there exists a unique i so that T (xij) = true.

3 i.e., there exists a permutation (π(1), . . . , π(n)), where
π(i) = j iff T (xij) = true.

4 by the last group of clauses (π(1), . . . , π(n)) is a path in G

G has a Hamilton path implies that R(G ) is satisfiable

1 suppose that (π(1), . . . , π(n)) is a Hamilton path.

2 set T (xij) = true iff π(i) = j .
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Proof (2)

R is computable in space O(log n)

1 generate the first four groups of clauses, this depends only on
n

2 needs 3 counters i , j , k for the indices of the variables

3 generate all clauses of the form (¬xki ∨¬xk+1,j); reusing space

4 test for each clause (¬xki ∨ ¬xk+1,j) whether there exists an
edge (i , j) ∈ G or not
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