

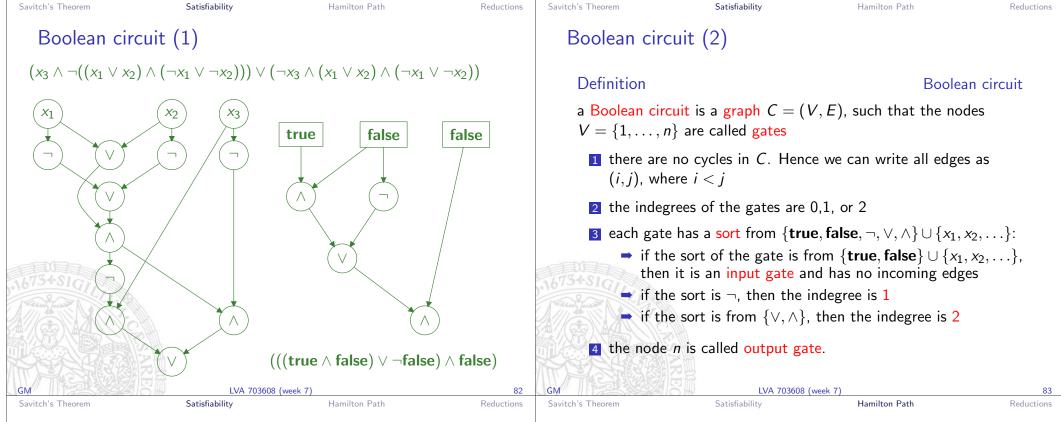
Savitch's Theorem	Satisfiability	Hamilton Path	Reductions	Savitch's Theorem	Satisfiability	Hamilton Path	Reductions
				Problem SA	AT		
Theoremevery Boolean expression is equivalent to one in CNF (or DNF),but the CNF is not uniqueExample $x \equiv (x \lor x) \equiv (x \lor x) \land (y \lor \neg y)$				 SAT given a Boolean expression φ in CNF, is φ satisfiable? Complexity we know many ways to decide the language SAT, e.g. truth tables, OBDDs, resolution, etc. still in the worst case all these algorithms are exponential we only know SAT ∈ TIME(2ⁿ) 			
Representation a Boolean expression is represented as a string over an alphabet containing $x, 0, 1, (,), \neg, \lor, \land$					acterisation via polyno		
GM Savitch's Theorem	LVA 703608 (Satisfiability	(week 7) Hamilton Path	78 Reductions	GM Savitch's Theorem	LVA 703608 (v Satisfiability		79 Reductions
Problem HORNSAT HORNSAT given a Boolean expression φ that is a Horn formula in CNF, is it satisfiable?				Boolean function			
				an <i>n</i> -ary Boolean function is a function $f: \{true, false\}^n \rightarrow \{true, false\}$ Fact any expression φ can be conceived as an <i>n</i> -ary Boolean function if			
Definition		Horn	formulas		tinct) variables		
⇒ a Horn cl	lause is a clause that	has <mark>at most one</mark> positiv	e literal.	Proof			
Example: $(\neg x_2 \lor x_3), (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ are Horn clauses				suppose $\{x_1, \ldots, x_n\}$ occur in φ ; let $\vec{t} = (t_1, \ldots, t_n)$ be truth values; assume for the assignment T , $T(x_i) = t_i$. Set			
a Boolean expression is a Horn formula if equivalent to a CNF where all clauses are Horn				$f(\vec{t}) := \begin{cases} t_1 \\ f_2 \end{cases}$	rue if $T\models arphi$ alse if $T ot\models arphi$		
Complexity HORNSAT ∈	P			Fact any <i>n</i> -ary Bo	olean function f can b	e expressed as a Boole	ean

GM

80

GM

expression involving x_1, \ldots, x_n LVA 703608 (week 7)



84

Value of a Circuit

GM

- → we write s(i), for the sort of gate *i*
- ⇒ let X(C) be the set of all variables occurring in the circuit C
- an assignment *T* is appropriate for *C*, if defined for all variables in *X*(*C*)
- ⇒ given T, the truth value of gate j, T(j) is defined as follows:
 1 T(j) := true, if s(j) = true

2
$$T(j) :=$$
 false, if $s(j) =$ false

3
$$T(j) := T(s(j)), \text{ if } s(j) \in X$$

4
$$T(j) = \text{not } T(i)$$
, if $s(j) = \neg \text{ and } (i, j) \in E$

5
$$T(j) = T(i_1)$$
 or $T(i_2)$, if $s(j) = \lor$ and $(i_1, j), (i_2, j) \in E$

6
$$T(j) = T(i_1)$$
 and $T(i_2)$, if $s(j) = \wedge$ and $(i_1, j), (i_2, j) \in E$

the value of C (written T(C)) is defined as T(n), where n is the output gate

CIRCUIT SAT

given a circuit C, is there a truth assignment T appropriate for C so that T(C) =true?

CIRCUIT VALUE

given a variable-free circuit C, is T(C) =true?

HAMILTON PATH

given a (directed) graph. Is there a path that visit every node exactly once?

