

Completeness				Circuit Va	Circuit Value Problem				SAT is NP -complete		
E×	kampl	е									
	\triangleright	0 _s	1	1	0						
	\triangleright	\vdash	1_{q_0}	1	0						
	\triangleright	\vdash	1	1_{q_0}	0						
	\triangleright	\vdash	1	1	0_{q_0}						
	\triangleright	\vdash	1	1	0	\sqcup_{q_0}					
	\triangleright	\vdash	1	1	$0_{q_0'}$						
	\triangleright	\vdash	1	1_q							
	\triangleright	\vdash	1_q	1							
16734	SID	$\vdash q$	1	1							
1 - armsta		U.C.	1_s	1							
and so on											
	Þ	yes	F								
GM										96	
Completeness Circuit Value Problem SAT is NP-c									SAT is NP -co	mplete	
	Definition							a	accepting		
	computation table T is accepting										
if $T_{ x ^k-1,1} = yes$											
Theorem											
N	M as above										
N	M accepts x iff the computation table of M on input x is accepting										
Theorem CIRCUIT VALUE is P -complete											
Proof											
we show that for any $L \in \mathbf{P}$, there is a (log space) reduction R to CIRCUIT VALUE											
→ suppose $L = L(M)$											
	\rightarrow M operates within time-bound $ x ^k - 2$										
	→ <i>T</i> denotes $n^k \times n^k$ -computation table $n = x $										
GM	GM LVA 703608 (week 8) 97										

