Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

Reductions

Definition

L_{1} is reducible to L_{2} if
1 exists a function R from strings to strings
2 computable by a deterministic TM in space $\mathcal{O}(\log n)$ such that
3 for all x :

$$
x \in \mathrm{~L}_{1} \quad \text { iff } \quad R(x) \in \mathrm{L}_{2} .
$$

\Rightarrow REACHABILITY reduces to CIRCUIT VALUE

- CIRCUIT SAT reduces to SAT
- CIRCUIT VALUE reduces to CIRCUIT SAT

CIRCUIT VALUE is a special case of CIRCUIT SAT

- identity as reduction suffices

Theorem
$\Rightarrow R_{1}$ be a reduction from language L_{1} to L_{2}
$\Rightarrow R_{2}$ be a reduction from language L_{2} to L_{3}
Then: $R_{1} \circ R_{2}$ is a reduction from language L_{1} to L_{3}
Proof
$\Rightarrow \mathrm{M}_{R_{1}}$ computes $R_{1} ; \mathrm{M}_{R_{2}}$ computes R_{2}
define $R(x)=R_{2}\left(R_{1}(x)\right)$:
11 start $\mathrm{M}_{R_{2}}$ on x
if $M_{R_{2}}$ moves the input cursor freeze $M_{R_{2}}$ and store the cursor position i
2 start $M_{R_{1}}$ on x on a separate set of strings
13 output of $M_{R_{1}}$ is written on a work tape we only compute the symbol referenced by i
4 resume $M_{R_{2}}$

Completeness

Definition
completeness
\mathcal{C} a complexity class, L is \mathcal{C}-complete if
■ $L \in \mathcal{C}$
2 any language $L^{\prime} \in \mathcal{C}$ is (logspace) reducible to L
Example
for the language

$$
H_{f}=\{M ; x \mid M \text { accepts input } x \text { after at most } f(|x|) \text { steps }\}
$$

11 any $\mathrm{L} \in \operatorname{TIME}(f(n))$ reduces to H_{f}
[but $\mathrm{H}_{f} \notin \operatorname{TIME}(f(n))$

- H_{f} is not $\operatorname{TIME}(f(n))$-complete

Definition

a complexity class \mathcal{C} is closed under reductions
if, whenever L is reducible to L^{\prime} and $\mathrm{L}^{\prime} \in \mathcal{C}$, then $\mathrm{L} \in \mathcal{C}$.

Theorem

P, NP, coNP, L, NL, PSPACE and EXP are closed under reductions.

Theorem

If $\mathcal{C}, \mathcal{C}^{\prime}$ are closed under reductions and $\exists \mathrm{L}$ complete for \mathcal{C} and \mathcal{C}^{\prime}, then $\mathcal{C}=\mathcal{C}^{\prime}$

Proof

we show $\mathcal{C} \subseteq \mathcal{C}^{\prime}$:
\Rightarrow let $\mathrm{L}^{\prime} \in \mathcal{C}$

- as L is complete for $\mathcal{C}, \mathrm{L}^{\prime}$ reduces to L
\Rightarrow as $\mathrm{L} \in \mathcal{C}^{\prime}, \mathrm{L}^{\prime} \in \mathcal{C}^{\prime}$, as \mathcal{C}^{\prime} closed under reductions
$\mathcal{C}^{\prime} \subseteq \mathcal{C}$: symmetric

Definition

consider a 1-string polynomial-time $\mathrm{TM} \mathrm{M}=(K, \Sigma, \delta, s)$ deciding L for fixed x, assume M operates in time-bound $|x|^{k}$ Represent the computation as a $|x|^{k} \times|x|^{k}$ table:

entry (i, j) contents of position j on the string at time i

Assumptions

11 M halts after at most $|x|^{k}-2$ steps (we ignore $|x|=1$)
12 pad strings if necessary
13 let $\sigma \in \Sigma$, write σ_{q}, if M reads σ and is in state q
4 cursor starts to the right of \triangleright and never visits \triangleright
5 M moves completely to the left before accepting
σ insert identical rows if M halts before $|x|^{k}-2$ has expired

Example

\triangleright	0_{s}	1	1	0	\sqcup	\sqcup	\sqcup	\sqcup
\triangleright	\vdash	$1_{q_{0}}$	1	0	\sqcup	\sqcup	\sqcup	\sqcup
\triangleright	\vdash	1	$1_{q_{0}}$	0	\sqcup	\sqcup	\sqcup	\sqcup
\triangleright	\vdash	1	1	$0_{q_{0}}$	\sqcup	\sqcup	\sqcup	\sqcup
\triangleright	\vdash	1	1	0	$\sqcup q_{0}$	\sqcup	\sqcup	\sqcup
\triangleright	\vdash	1	1	$0_{q_{0}^{\prime}}$	\sqcup	\sqcup	\sqcup	\sqcup
\triangleright	\vdash	1	1_{q}	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup
\triangleright	\vdash	1_{q}	1	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup
\triangleright	$\vdash q$	1	1	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup
\triangleright								
\triangleright	\vdash	1_{s}	1	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup

and so on
\triangleright yes

Definition
accepting
computation table T is accepting
if $T_{|x|^{k}-1,1}=y e s$
Theorem
M as above
M accepts x iff the computation table of M on input x is accepting
Theorem
CIRCUIT VALUE is \mathbf{P}-complete
Proof
we show that for any $\mathrm{L} \in \mathbf{P}$, there is a (log space) reduction R to CIRCUIT VALUE

- suppose $L=L(M)$
- M operates within time-bound $|x|^{k}-2$
- T denotes $n^{k} \times n^{k}$-computation table $n=|x|$

Observations

1 changes in the table from line to the next are local
$\boxed{2}$ the local changes can be simulated by a circuit C
3 the table is representable by connecting copies of C

Locality

1 let $i=0, j=0$, or $j=n^{k}-1$ the value of $T_{i j}$ is independent of M and x
2 consider $T_{i j}$ equals the symbol under the cursor at position j read at time i $T_{i j}$ depends only on $T_{i-1, j-1}, T_{i-1, j}, T_{i-1, j+1}$

Γ denotes all symbols occurring in T
\Rightarrow encode symbols in Γ in binary
\Rightarrow define a table S of binary entries

$$
S_{i j l}
$$

$$
i \in\left[0, n^{k}-1\right] \quad j \in\left[0, n^{k}-1\right] \quad I \in[1, m]
$$

\[

\]

\Rightarrow define m Boolean functions with $3 m$ inputs for all i, j $S_{i j l}=F_{l}\left(S_{i-1, j-1,1}, \ldots, S_{i-1, j-1, m}, \ldots, S_{i-1, j+1,1}, \ldots, S_{i-1, j-1, m}\right)$

- Boolean circuit C with $3 m$ inputs and m outputs computes

$$
\begin{array}{lll}
F_{1} & \ldots & F_{m}
\end{array}
$$

- given the binary encoding of $T_{i-1, j-1}, T_{i-1, j}, T_{i-1, j+1}$ C computes $T_{i j}$

Facts

1 C depends only on M
2. C has a fixed size independent of x

Definition

Final Construction

construct D_{x} :
$1\left(n^{k}-1\right) \cdot\left(n^{k}-2\right)$ copies of C
2 the input gates of $C_{i j}$ are identified with the output gates of $C_{i-1, j-1}, C_{i-1, j}, C_{i-1, j+1}$
3 the input gates of D_{x} correspond to the first row
44 the single output gate of D_{x} is the first output of $C_{n^{k}-1,1}$

Definition

for every x, set $R(x)=D_{x}$
construction of the circuit $R(x)$ possible in space $\mathcal{O}(\log n)$

Theorem

SAT is NP-complete

Fact

CIRCUIT SAT reduces to SAT

Proof

SAT $\in \mathbf{N P}$, the certificate of a polynomial verifier is the assignment we show that all $\mathrm{L} \in \mathbf{N P}$ reduce to CIRCUIT SAT:
\Rightarrow NTM N decides L in time $|x|^{k}-2$
\Rightarrow assume N has at each step two nondeterministic choices
\Rightarrow the first is called 0 , the second 1
\Rightarrow thus a choice sequence is a string:

$$
\vec{c}=\left(c_{0}, \ldots, c_{n^{k}-2}\right) \in\{0,1\}^{n^{k}-1}
$$

1 construct a computation table replace $S_{i j l}$ by $S_{i, j, l, c_{i}}$:

2 recall that m denotes the bit-length of the symbols in the computation table

3 circuit C has $3 m+1$ inputs
4 the extra arguments from \vec{c} become input gates
5 construction of the circuit $R(x)$ possible in space $\mathcal{O}(\log n)$

