Algorithm Theory

Georg Moser Mircea Dan Hernest

Institute of Computer Science @ UIBK

Summer 2007

Circuit Value Problem

SAT is NP-complete

Theorem

composition of reductions

- $ightharpoonup R_1$ be a reduction from language L_1 to L_2
- $ightharpoonup R_2$ be a reduction from language L_2 to L_3

Then: $R_1 \circ R_2$ is a reduction from language L_1 to L_3

Proof

 \rightarrow M_{R_1} computes R_1 ; M_{R_2} computes R_2

define $R(x) = R_2(R_1(x))$:

- 1 start M_{R_2} on x if M_{R_2} moves the input cursor freeze M_{R_2} and store the cursor position i
- 2 start M_{R_1} on x on a separate set of strings
- \blacksquare output of M_{R_1} is written on a work tape we only compute the symbol referenced by i
- 4 resume M_{R_2}

Reductions

Definition

logspace-reductions

 L_1 is reducible to L_2 if

- \blacksquare exists a function R from strings to strings
- 2 computable by a deterministic TM in space $\mathcal{O}(\log n)$ such that
- 3 for all x:

$$x \in L_1$$
 iff $R(x) \in L_2$.

- ➡ REACHABILITY reduces to CIRCUIT VALUE
- → CIRCUIT SAT reduces to SAT
- CIRCUIT VALUE reduces to CIRCUIT SAT

CIRCUIT VALUE is a special case of CIRCUIT SAT

identity as reduction suffices

Circuit Value Problem

SAT is NP-complete

Completeness

Definition

Completeness

completeness

 \mathcal{C} a complexity class, L is \mathcal{C} -complete if

- 1 $L \in \mathcal{C}$
- 2 any language $L' \in \mathcal{C}$ is (logspace) reducible to L

Example

for the language

 $H_f = \{M; x \mid M \text{ accepts input } x \text{ after at most } f(|x|) \text{ steps} \}$

LVA 703608 (week 8)

- **11** any $L \in \mathsf{TIME}(f(n))$ reduces to H_f
- 2 but $H_f \not\in TIME(f(n))$
- \rightarrow H_f is **not TIME**(f(n))-complete

GM LVA 703608 (week 8) 92

Completeness Circuit Value Problem SAT is NP-complete Completeness Circuit Value Problem SAT is NP-complete **Definition Definition** computation table closure under reductions a complexity class C is closed under reductions consider a 1-string polynomial-time TM $M = (K, \Sigma, \delta, s)$ if, whenever L is reducible to L' and $L' \in \mathcal{C}$, then $L \in \mathcal{C}$. deciding L for fixed x, assume M operates in time-bound $|x|^k$ Represent the computation as a $|x|^k \times |x|^k$ table: Theorem P, NP, coNP, L, NL, PSPACE and EXP are closed under entry (i, j) contents of position j on the string reductions. at time i **Theorem** If \mathcal{C} , \mathcal{C}' are closed under reductions and $\exists L$ complete for \mathcal{C} and \mathcal{C}' , **Assumptions** then $\mathcal{C} = \mathcal{C}'$ 1 M halts after at most $|x|^k - 2$ steps (we ignore |x| = 1) Proof 2 pad strings if necessary we show $C \subseteq C'$: ightharpoonup let $L' \in \mathcal{C}$ 3 let $\sigma \in \Sigma$, write σ_q , if M reads σ and is in state q4 cursor starts to the right of ▷ and never visits ▷ \Rightarrow as L is complete for \mathcal{C} , L' reduces to L 5 M moves completely to the left before accepting \Rightarrow as $L \in \mathcal{C}'$, $L' \in \mathcal{C}'$, as \mathcal{C}' closed under reductions 6 insert identical rows if M halts before $|x|^k - 2$ has expired $C' \subseteq C$: symmetric 94 Circuit Value Problem SAT is NP-complete Circuit Value Problen SAT is NP-complete Example Definition accepting computation table T is accepting Ш if $T_{|x|^k-1,1} = yes$ 1 Theorem 1_{q_0} M as above 0_{q_0} M accepts x iff the computation table of M on input x is accepting Theorem 1 $0_{q'_0}$ Ш CIRCUIT VALUE is P-complete 1_a Ш Ш Proof Ш we show that for any $L \in \mathbf{P}$, there is a (log space) reduction R to Ш CIRCUIT VALUE 1 Ш Ш ightharpoonup suppose L = L(M)and so on \rightarrow M operates within time-bound $|x|^k - 2$ \rightarrow T denotes $n^k \times n^k$ -computation table n = |x|ves GM LVA 703608 (week 8) 96 LVA 703608 (week 8) 97 Completeness Circuit Value Problem SAT is NP-complete Completeness Circuit Value Problem SAT is NP-complete

Observations

- 1 changes in the table from line to the next are local
- 2 the local changes can be simulated by a circuit C
- \blacksquare the table is representable by connecting copies of C

Locality

- $11 \text{ let } i = 0, \ i = 0, \ \text{or } i = n^k 1$ the value of T_{ii} is independent of M and x
- $\mathbf{2}$ consider T_{ii} equals the symbol under the cursor at position *j* read at time i T_{ij} depends only on $T_{i-1,j-1}$, $T_{i-1,j}$, $T_{i-1,j+1}$

$$(i-1,j-1)$$
 $(i-1,j)$ $(i-1,j+1)$ (i,j)

SAT is NP-complete Completeness Circuit Value Problem SAT is NP-complete

Facts

- C depends only on M
- 2 C has a fixed size independent of x

Definition

Final Construction

construct D_{x} :

- $(n^k-1)\cdot(n^k-2)$ copies of C
- 2 the input gates of C_{ii} are identified with the output gates of $C_{i-1,i-1}$, $C_{i-1,i}$, $C_{i-1,i+1}$
- 3 the input gates of D_x correspond to the first row
- 4 the single output gate of D_x is the first output of $C_{n^k-1.1}$

Definition

reduction

for every x, set $R(x) = D_x$

construction of the circuit R(x) possible in space $O(\log n)$

LVA 703608 (week 8)

100

 Γ denotes all symbols occurring in T

- encode symbols in Γ in binary
- → define a table S of binary entries

$$S_{ijl}$$
 $i \in [0, n^k - 1]$ $j \in [0, n^k - 1]$ $l \in [1, m]$

$$\begin{array}{c|c} (a_1,\ldots,a_{\mathbf{m}}) & (b_1,\ldots,b_{\mathbf{m}}) & (c_1,\ldots,c_{\mathbf{m}}) \\ \hline & (d_1,\ldots,d_{\mathbf{m}}) \\ \end{array}$$

- \rightarrow define *m* Boolean functions with 3*m* inputs $S_{iii} = F_i(S_{i-1,i-1,1},\ldots,S_{i-1,i-1,m},\ldots,S_{i-1,i+1,1},\ldots,S_{i-1,i-1,m})$
- \rightarrow Boolean circuit C with 3m inputs and m outputs computes

$$F_1 \ldots F_m$$

 \rightarrow given the binary encoding of $T_{i-1,i-1}$, $T_{i-1,i}$, $T_{i-1,i+1}$ C computes T_{ii}

Circuit Value Problem

Cook

Theorem

SAT is **NP**-complete

Fact

CIRCUIT SAT reduces to SAT

Proof

SAT \in **NP**, the certificate of a polynomial verifier is the assignment

we show that all $L \in \mathbf{NP}$ reduce to CIRCUIT SAT:

- **→** NTM N decides L in time $|x|^k 2$
- assume N has at each step two nondeterministic choices
- the first is called 0, the second 1
- thus a choice sequence is a string:

$$\vec{c} = (c_0, \dots, c_{n^k-2}) \in \{0, 1\}^{n^k-1}$$

LVA 703608 (week 8)

Completeness Circuit Value Problem SAT is NP-complete

Definition

Construction

1 construct a computation table replace S_{ijl} by S_{i,j,l,c_i} :

$$\begin{array}{c|cccc} (a_1,\ldots,a_m) & (b_1,\ldots,b_m) & (e_1,\ldots,e_m) & c_i \\ & & (d_1,\ldots,d_m) & \end{array}$$

- 2 recall that *m* denotes the bit-length of the symbols in the computation table
- 3 circuit C has 3m + 1 inputs
- 4 the extra arguments from \vec{c} become input gates
- **5** construction of the circuit R(x) possible in space $O(\log n)$

GM LVA 703608 (week 8)

102