

3SAT	2SAT	MAX2SAT	3SAT	2SAT	MAX2SAT
	/ariants of 3SAT Definition $3SAT_1 = \left\{ \varphi \mid \varphi \text{ is a satisfiable 3CNF-formula and each clause} \atop \right\}$	$3SAT_1$ contains $\}$	Proof Idea rewrite instances of 3SAT such that the restriction is fulfilled Proof \Rightarrow given $\varphi \in 3$ CNF		
	Theorem 3SAT ₁ is NP-complete Definition $3SAT_2 = \begin{cases} \varphi \text{ is a satisfiable CNF-formula, for each clause } C \\ \varphi \text{ and each variable occurs at most 3 times and each at most twice in the formula} \end{cases}$ Theorem $3SAT_2 \text{ is NP-complete}$	106	suppose the variable x occurs $k > 3$ times in φ Definition construction 1 introduce k new variables x_1, \ldots, x_k 2 replace distinct occurrences by distinct variables 3 add $(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \cdots \land (\neg x_k \lor x_1)$ 4 number of occurrences of other variables is unchanged 5 number of occurrences of literals in the new clauses is ≤ 2 repeat for all variables violating the restriction		les) nchanged clauses is ≤ 2
3SAT	Definition $2SAT = \{\varphi : \varphi \text{ is a satisfiable 2CNF-formula}\}$	MAX2SAT	T 3SAT 2SAT MAX2SAT Theorem φ is unsatisfiable iff \exists variable x such that \exists paths from x to $\neg x$ and from $\neg x$ to x in $G(\varphi)$		
	Theorem 2SAT is in P , more precisely in NL .		Proof if		
1673 944 1673	 Definition G(φ) φ be a 2CNF formula define a graph G(φ): 1 nodes of G(φ) are the variables (and their negations) of φ 2 for any pair (α, β) ∈ G: if exists clause ¬α ∨ β in φ, add (α, β) to the set of edges Fact If (α, β) is an edge, then so is (¬β, ¬α) 		 suppose there exists a path from x to ¬x and from ¬x to x; further there is a satisfying assignment T we assume T(x) = true (i) T(x) = true (ii) T(¬x) = false (iii) ∃ path between x and ¬x ∃ an edge (α, β) ∈ G(φ): T(α) = true, T(β) = false ∃ clause in φ: ¬α ∨ β and T(¬α ∨ β) = false contradiction 		
GM	LVA 703608 (week 9)	108	GM	LVA 703608 (week 9)	109

