

Variants of 3SAT

Definition

3 SAT $_{1}$
$3 \mathrm{SAT}_{1}=\left\{\varphi \left\lvert\, \begin{array}{l}\varphi \text { is a satisfiable 3CNF-formula and each clause contains } \\ \text { distinct variables }\end{array}\right.\right\}$

Theorem
$3 \mathrm{SAT}_{1}$ is NP-complete
Definition
$3 \mathrm{SAT}_{2}=\left\{\begin{array}{l}\varphi \left\lvert\, \begin{array}{l}\varphi \text { is a satisfiable CNF-formula, for each clause } C,|C| \leqslant 3 \\ \text { and each variable occurs at most } 3 \text { times and each literal } \\ \text { at most twice in the formula }\end{array}\right.\end{array}\right\}$

Theorem

3SAT 2 is NP-complete

Proof Idea
rewrite instances of 3SAT such that the restriction is fulfilled
Proof
\Rightarrow given $\varphi \in 3$ CNF
suppose the variable x occurs $k>3$ times in φ
Definition
1 introduce k new variables x_{1}, \ldots, x_{k}
2 replace distinct occurrences by distinct variables
3 add $\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \cdots \wedge\left(\neg x_{k} \vee x_{1}\right)$
4 number of occurrences of other variables is unchanged
5 number of occurrences of literals in the new clauses is $\leqslant 2$
repeat for all variables violating the restriction

Definition

$$
2 \mathrm{SAT}=\{\varphi: \varphi \text { is a satisfiable 2CNF-formula }\}
$$

Theorem
2SAT is in \mathbf{P}, more precisely in NL.
Definition
φ be a 2CNF formula
define a graph $G(\varphi)$:
1 nodes of $G(\varphi)$ are the variables (and their negations) of φ
2 for any pair $(\alpha, \beta) \in G$:
if exists clause $\neg \alpha \vee \beta$ in φ, add (α, β) to the set of edges
Fact
If (α, β) is an edge, then so is $(\neg \beta, \neg \alpha)$

Theorem

φ is unsatisfiable iff \exists variable x such that \exists paths from x to $\neg x$ and from $\neg x$ to x in $G(\varphi)$

Proof
if
\Rightarrow suppose there exists a path from x to $\neg x$ and
from $\neg x$ to x; further there is a satisfying assignment T
\Rightarrow we assume $T(x)=$ true
\Rightarrow (i) $T(x)=$ true (ii) $T(\neg x)=$ false
(iii) \exists path between x and $\neg x$
$\Rightarrow \exists$ an edge $(\alpha, \beta) \in G(\varphi): T(\alpha)=$ true, $T(\beta)=$ false
$\Rightarrow \exists$ clause in $\varphi: \neg \alpha \vee \beta$ and $T(\neg \alpha \vee \beta)=$ false
\Rightarrow contradiction
only-if
\Rightarrow suppose no such paths exists; we define assignment T

Definition

1 pick a node α, not yet assigned a truth value
2 such that there is no path from α to $\neg \alpha$
3 set α and all successors to true
4 set $\neg \alpha$ and all predecessors to false
\Rightarrow this is well-defined
= only β or $\neg \beta$ can be successor of α
\Rightarrow we cannot change existing truth-values

2SAT

Theorem
$2 S A T$ is in $\mathbf{N L} \subseteq \mathbf{P}$
Proof
NL is closed under complement, it suffices to recognise unsatisfiable expressions

Definition

1 guess a variable x
2 check the existence of a path from x to $\neg x$ (and back)
3 instance of REACHABILITY which is decidable by a NTM operating in log-space

Definition

MAX2SAT
$\operatorname{MAX} 2 \operatorname{SAT}=\left\{\varphi: \begin{array}{l}\varphi \text { is a 2CNF-formula and at least } K \text { clauses are } \\ \text { satisfiable. }\end{array}\right\}$
Theorem
MAX2SAT is NP-complete

$$
\begin{array}{rll}
(x) & (y) \quad(z) & (w) \\
(\neg x \vee \neg y) & (\neg y \vee \neg z) & (\neg z \vee \neg x) \\
(x \vee \neg w) & (y \vee \neg w) & (z \vee \neg w)
\end{array}
$$

if $T(x \vee y \vee z)=$ true
7 clauses can be satisfied; otherwise only 6

10	GM
	3SAT

Proof

$$
\begin{array}{rll}
(x) & (y) & (z)
\end{array} \quad(w)
$$

MAX2SAT \in NP

easy
reduction from 3SAT
\Rightarrow let $\varphi \in$ 3CNF
\Rightarrow let m denote the number of clauses in φ

Definition
1 for any clause $C_{i}=(\alpha \vee \beta \vee \gamma)$ in φ add the block with w_{i} fresh to $R(\varphi)$
2 set $K=7 \mathrm{~m}$
$\varphi \in$ 3SAT iff $R(\varphi) \in$ MAX2SAT
\Rightarrow suppose φ is satisfied
for each block 7 clauses are satisfied thus $R(\varphi) \in$ MAX2SAT
\Rightarrow suppose in $R(\varphi) 7 m$ clauses are satisfied
hence in each block at most 7 clauses can be satisfied
hence in any block $\alpha \vee \beta \vee \gamma$ is satisfied
hence any clause in φ is satisfied
logspace reduction
easy to check that computation of R needs only log-space
this form of approach to a reduction is called gadget construction; the blocks form the gadget

