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1 Combining elements of a given list.

In this paragraph, we go through all the steps necessary to define the the list of all possible
permutations perm l of a list l. The only argument of perm is a list, so it is natural to use
recursion over a list:

l et rec perm l = match l with
| [ ] −> . . .
| x : : xs −> . . .

; ;

The only possible permutation of an empty list is the empty list so the first case is easy. The
second case is not obvious, so we just put the recursive call in a let and try to make sense of
the result:

l et rec perm l = match l with
| [ ] −> [ [ ] ]
| x : : xs −> l et ps = perm xs in . . .

; ;

Question: what are the possible permutations of x :: xs, given the possible permutations of xs?
Answer: given a permutation of xs, we can create a permutation of x :: xs by inserting x anywhere
in xs. So we must define a function perm1 that given an element and a list inserts the element
anywhere in the list. This is obviously a recursive function,so we start with

l et rec perm1 x l = match l with
| [ ] −> . . .
| y : : ys −> . . .

; ;

There is only one way of inserting x in the empty list. Inserting x in y :: ys can be done before
the whole list or somewhere in ys. This can be written as

l et rec perm1 x l = match l with
| [ ] −> [ [ x ] ]
| y : : ys −> ( x : : y : : ys ) : : ( map ( fun zs −> y : : z s ) ( perm1 x ys ) )

; ;

Going back to our original problem, we can insert the x anywhere in a permutation of xs by
writing map (perm1 x) ps the result is a list of lists of possible permutations, so we need to
concatenate that list:
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l et rec perm l = match l with
| [ ] −> [ [ ] ]
| x : : xs −>

l et ps = perm xs in
let xps = map (perm1 x ) ps in

L i s t . concat xps
; ;

The structure of this definition is very common for function that return combinations of
lists. Often there is precisely one possibility for the empty list. Given a non-empty list x :: xs,
we can (i) recursively build a list of combinations for xs; (ii) for each combination combination
c for xs we build the possible combinations for x and c; (iii) concatenate the list of lists of
combinations built in step (ii) as the final result.

Exercise 1 Define the function sub lists that takes a list and returns a list of all possible sub
lists of the given list. (A sub list of a list is obtained by erasing zero or more elements of the
list.) So for example

sub lists [1;2;3] = [[]; [3]; [2]; [2; 3]; [1]; [1; 3]; [1; 2]; [1; 2; 3]]

Note that the order of the returned list is irrelevant so

sub lists [1;2;3] = [[]; [1]; [2]; [3]; [1; 2]; [1; 3]; [2; 3]; [1; 2; 3]]

is just as good. Hint: start with

s u b l i s t s l = match l with
| [ ] −> . . .
| x : : xs −> l et l s = s u b l i s t s xs in . . .

and answer the questions

• What are the sub lists of the empty list?

• Given a sub list sl of xs, what are the possible sub lists of x :: xs that we can construct
from x and sl?

• How do we write that in OCaml?

Exercise 2 Define the Cartesian product. That is define a function cartesian n l, which given
a list representation of a set S return the list representation of Sn, where each element of Sn is
represented as a list. E.g.

cartesian 3 [0;1] = [[0; 0; 0]; [0; 0; 1]; [0; 1; 0]; [0; 1; 1]; [1; 0; 0]; [1; 0; 1]; [1; 1; 0]; [1; 1; 1]]

2 The n-queens problem

The n-queens problem is the problem of placing n queens on a n×n chess board in such a way
that no two queens can take each other. That is, each row, column and diagonal may contain
at most one queen. For example in 4 × 4, we can have

Q

Q

Q

Q

2



Table 1: Solution to the n-queens problem (queens.ml).

l et rec seq n k = i f n<=k then n : : ( seq (n+1) k ) else [ ] ; ;

l et rec pa i r s l 1 l 2 = match l 1 with
| [ ] −> [ ]
| x : : xs −> ( L i s t .map ( fun y −> (x , y ) ) l 2 )@( pa i r s xs l 2 )

; ;

l et rec choose n l = i f n = 0 then [ [ ] ] else
match l with

| [ ] −> [ ]
| x : : xs −> ( L i s t .map ( fun ys−>x : : ys ) ( choose (n−1) xs ) )

@
( choose n xs )

; ;

l et good pa i r [ ( i1 , j 1 ) ; ( i2 , j 2 ) ] =
( i1<>i 2 ) & ( j1<>j 2 ) & ( i1−i2<>j1−j 2 ) & ( i1−i2<>j2−j 1 ) ; ;

l et a l l l = L i s t . f o l d l e f t ( & ) true l ; ;

l et g o o d l i s t l = a l l ( L i s t .map good pa i r ( choose 2 l ) ) ; ;

l et queens n = l et po s i t i o n s = pa i r s ( seq 1 n) ( seq 1 n) in
L i s t . f i l t e r g o o d l i s t ( choose n p o s i t i o n s ) ; ;

We represent (possible) solutions by lists of positions on the board in matrix notation. Thus,
the given solution corresponds to

[(1, 2); (2, 4); (3, 1); (4, 3)]

In Table 1, we have given a complete solution to the n-queens problem. The solution is based
on

1. Generating the list of all positions on the board.

2. Generating the list of all lists of n positions.

3. Selecting the solutions from that list.

A solution is a list of position, where each pair of positions on the list is good. Meaning that
each pair is neither in the same column nor in the same row nor on the same diagonal.

The given solution suffers from two performance problems. First, building the initial list of
solution by selecting n positions randomly generates too many candidates. It would be better
to start by choosing a random position on each row. That is, to generate only those candidates
where we have precisely one queen in each row. As a further improvement it is also possible to
start from those solutions with precisely one queen in each row and column. (Hint: consider
permutations of [1; · · · ;n].) Second, the solution uses the default list operations. It would be
better to use either lazy or tail recursive list operations.
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Exercise 3 Rewrite the solution in Table 1 until you obtain a version, for which the interpreter
is able to generate all solutions to the 8-queens problem.

3 Sudoku

An easy way to represent a Sudoku puzzle is to represent the empty fields with the list [1; · · · ; 9]
and a given field i with [i] as follows: (see sudoku.ml)

l et any = [ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ] ; ;

l et sample1 = [
[ any ; any ; [ 3 ] ; [ 9 ] ; any ; any ; [ 7 ] ; [ 6 ] ; any ] ;
[ any ; [ 4 ] ; any ; any ; any ; [ 6 ] ; any ; any ; [ 9 ] ] ;
[ [ 6 ] ; any ; [ 7 ] ; any ; [ 1 ] ; any ; any ; any ; [ 4 ] ] ;

[ [ 2 ] ; any ; any ; [ 6 ] ; [ 7 ] ; any ; any ; [ 9 ] ; any ] ;
[ any ; any ; [ 4 ] ; [ 3 ] ; any ; [ 5 ] ; [ 6 ] ; any ; any ] ;
[ any ; [ 1 ] ; any ; any ; [ 4 ] ; [ 9 ] ; any ; any ; [ 7 ] ] ;

[ [ 7 ] ; any ; any ; any ; [ 9 ] ; any ; [ 2 ] ; any ; [ 1 ] ] ;
[ [ 3 ] ; any ; any ; [ 2 ] ; any ; any ; any ; [ 4 ] ; any ] ;
[ any ; [ 2 ] ; [ 9 ] ; any ; any ; [ 8 ] ; [ 5 ] ; any ; any ] ]
; ;

This representation was chosen because it can be used as the data structure in the solving
process as well: every field of the matrix contains the list of possible values.

We will now consider a few components from which a full Sudoku solver can be built.

a) Given a row (a list of lists of possible values), we can:

1. Generate the list of all possible permuations of [1; · · · ; 9].
2. Select those permutations that are possible given the possible values for each position.
3. From this list of possible permutation go back to a list of possibilities.

For example, if we consider the smaller example [[1; 2]; [2; 3]; [2; 3]] then we get

[[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]; [3; 1; 2]; [3; 2; 1]]

as the list of permutations. If we check against the first field ([1; 2]) we are left with

[[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]]

Checking the second field reduces it to

[[1; 2; 3]; [1; 3; 2]; [2; 3; 1]]

And checking against the last field yields

[[1; 2; 3]; [1; 3; 2]]

If we generate possible values from this we get

[[1]; [2; 3]; [2; 3]]

Note that you should treat the lists of possible values as sets: at most one occurrence of each
value.
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b) We do not only need to solve for rows, we also must solve for columns and sub-matrices. To
be able to use the row-sovler for that, we introduce the following operations on matrices:

transpose

trans


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

 =

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

block transpose

block


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

 =

a1 a2 b1 b2

a3 a4 b3 b4

c1 c2 d1 d2

c3 c4 d3 d4

Note that
trans(trans(M)) = M and block(block(M)) = M

That means that you can (block) transpose, solve rows and (block) transpose again to do
column (block) solving.

c) This solving process has to be repeated until there is no more change. For this the function
fix is useful:

l et rec f i x f x =
l et y = f x in
i f x = y then x else f i x f y

; ;

For example, if we have a function that decreases until we hit a minimum then we alwas get
the minimum:

# fix (fun x -> max 2 (x-1)) 6;;
- : int = 2

d) The last element is that when we get stuck solving, we find a field for which more than one
element is possible and simply try each possibility. Note that if you choose wrong then you
might end up with an unsolvable puzzle which results in one or more of the possible lists
being empty.

Exercise 4 Implement a Sudoku solver.
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