
Proving Equality of Functional Programs
Lecture Notes Functional Programming SS2007

Stefan Blom

Date: 2007/05/09 20:31:32
Revision: 1.3

Contents

1 Structural Induction 1

2 Tail Recursion 5

3 Exercises 7

1 Structural Induction

In OCaml, the append on two native lists is written as the infix function @. The definition of @ is

l et rec (@) l y = match l with
| [] −> y
| a : : x −> a : : (x@y)

; ;

This definition can be translated to Haskell style as follows

[] @ y = y
(a :: x) @ y = a :: (x @ y)

(1)

As an example, we will prove associativity of @. That is, for all finite lists x, y and z we have that

(x @ y) @ z = x @ (y @ z)

To do this, we need structural induction on lists. If we want to prove a property φ for all lists l by
structural induction on l then we need to prove two things. First, we must prove that φ holds for
the empty list. Second, we must show that if φ holds for a list x then φ holds for any list a :: x. In
other words, we have a proof that fits the pattern

We prove φ by structural induction on l.
We have two cases:

l = [] ”proof of φ[l := x]”

1

l = a :: x Let a be any element and let x be any list.
Assume that φ[l := x].
”proof of φ[l := a :: x]”

q.e.d.

This text corresponds to the formal proof rule

φ[l := []] ∀a : α.∀x : α list.(φ[l := x]) → (φ[l := a :: x])
a, x fresh∀l : α list.φ

The restriction that a and x are fresh means that a and x should not occur in φ or any of our as-
sumptions. (Note that technically it suffices that a and x do not occur free in any of the assumptions
used.)

Using structural induction, we prove that the append function on lists is associative. That is,
we need to prove that for all lists x, y and z we have that

(x @ y) @ z = x @ (y @ z)

Proof. By structural induction on x.
We have two cases:

x = [] We must prove that ([] @ y) @ z = [] @ (y @ z).
By applying Def. 1 once and simplifying, we get

([] @ y) @ z = (y) @ z = y @ z

and also
[] @ (y @ z) = (y @ z) = y @ z

x = a :: u Given an element a and a list u, such that (u @ y) @ z = u @ (y @ z) we must prove
that ((a :: u) @ y) @ z = (a :: u) @ (y @ z).
By applying Def. 1 twice, we get

((a :: u) @ y) @ z = (a :: (u @ y)) @ z = a :: ((u @ y) @ z)

By applying Def. 1 once, we get

(a :: u) @ (y @ z) = a :: (u @ (y @ z))

The induction hypothesis is that (u @ y) @ z = u @ (y @ z). Thus, by induction hypothesis
we have

a :: ((u @ y) @ z) = a :: (u @ (y @ z))

�

Our second example involves two function that both compute the length of a list.

2

l et rec l en1 l = match l with
| [] −> 0
| a : : x −> 1 + (len1 x)

; ;
l et rec l ena a l = match l with
| [] −> a
| x : : xs −> l ena (a+1) xs

; ;
l et l en2 = lena 0 ; ;

We want to prove that for all lists l, we have that

len1 l = len2 l

The shortest proof is to first prove a claim and then prove the statement. Proof. We claim the
lemma

∀n : n + (len1 l) = (lena n l)

We prove the claim by structural induction on l. We have two cases:

l = [] By unfolding the definition of len1 we get

n + (len1 []) = n + 0 = n

By unfolding the definition of lena we get

lena n [] = n

l = x :: xs Assume that ∀n : n + (len1 xs) = (lena n xs) and let k be given.
By unfolding the definition of len1 and associativity of + we get

k + (len1 (a :: xs)) = k + (1 + (len1 xs)) = (k + 1) + (len1 xs)

By unfolding the definition of lena we get

lena k (a :: xs) = lena (k + 1) xs

By induction hypothesis (k + 1) + (len1 xs) = lena (k + 1) xs, so

∀k : k + (len1 (a :: xs)) = lena k (a :: xs)

This proves the claim.
From the claim we get

len1 l = 0 + (len1 l) = lena 0 l = len2 l

�

This short proof depends on being able to correctly guess the lemma. Usually, guessing the
lemma right requires attempting a proof and getting stuck in it. So again we claim

∀l : len1 l = len2 l

Proof. By structural induction on l. We have two cases:

3

l = [] Evaluating the left and right-hand sides yields

len1 [] = 0

and
len2 [] = lena 0 [] = 0

l = x :: xs Assuming that len1 xs = len2 xs, we need to show that

len1 (x :: xs) = len2 (x :: xs)

Starting from both sides, we can derive

len1 (x :: xs) = 1 + (len1 xs) definition of len1

= 1 + (len2 xs) induction hypothesis
= 1 + (lena 0 xs) definition of len2

len2 (x :: xs) = lena 0 (x :: xs) definition of len2

= lena 1 xs definition of lena

At this point the proof is stuck: 1 + (lena 0 xs) and lena 1 xs are not the same.
There are two possibilities to continue. First, we might be able to see now what the
correct lemma is and start a new proof from scratch. Second, we might try to make
a claim that allows us to finish the induction proof and then see about proving the
claim later. The first try for such a claim would be 1 + (lena 0 xs) = lena 1 xs,
but that is too simple. So instead of 0 and 1, we use n and n + 1.

We claim that
∀l : ∀n : 1 + (lena n l) = lena (n + 1) l

Which shows that
len1 (x :: xs) = len2 (x :: xs)

This completes the proof by structural induction, but we still need to prove the claim.
We prove the claim by structural induction on l:

l = []

1 + (lena n []) = 1 + n = n + 1

lena (n + 1) l = n + 1

l = x :: xs Assuming that ∀n : 1 + (lena n xs) = lena (n + 1) xs, we have

1 + (lena k (x :: xs)) = 1 + (lena (k + 1) xs) = (lena (k + 2) xs)

(lena (k + 1) (x :: xs)) = (lena (k + 2) xs)

�

4

2 Tail Recursion

Consider the two versions of length of lists:

l et rec l en1 l = match l with
| [] −> 0
| a : : x −> 1 + (len1 x)

; ;
l et rec l ena a l = match l with
| [] −> a
| x : : xs −> l ena (a+1) xs

; ;
l et l en2 = lena 0 ; ;

If we execute these functions on the list [1; 2; 3; 4] we get

len1 [1; 2; 3; 4] = 1 + (len1 [2; 3; 4])
= 1 + (1 + (len1 [3; 4]))
= 1 + (1 + (1 + (len1 [4])))
= 1 + (1 + (1 + (1 + (len1 []))))
= 1 + (1 + (1 + (1 + 0)))
= 1 + (1 + (1 + 1))
= 1 + (1 + 2)
= 1 + 3
= 4

len2 [1; 2; 3; 4] = lena 0 [1; 2; 3; 4]
= lena (0 + 1) [2; 3; 4]
= lena 1 [2; 3; 4]
= lena (1 + 1) [3; 4]
= lena 2 [3; 4]
= lena (2 + 1) [4]
= lena 3 [4]
= lena (3 + 1) []
= lena 4 []
= 4

These sequences have the same length: O(|l|) where l is a list and |l| is the length of l. Thus their
execution time is similar. However, the first version uses O(|l|) stack space and the second version
uses O(|1|) stack space. This makes the second version preferable.

The trick used to make the first version tail-recursive is to use an accumulator. Normally a
recursive function will first copy a list to the stack and then build a new list. A function that uses
and accumulator builds the result in the accumulator while it is working through the list.

Another good example is the function rev that reverse the order of a list. A direct recursive
definition of rev would be

l et rec revd l = match l with
| [] −> []
| a : : x −> (revd x)@[a]

; ;

This is a bad way of defining rev: the time complexity is O(|l|2) and the stack space used is O(|l|).
It is much better to define rev using an auxiliary function with an accumulator:

l et rec reva a l = match l with
| [] −> a
| x : : xs −> reva (x : : a) xs

; ;
l et rev l = reva [] l ; ;

5

this version uses O(|l|) time and O(|1|) stack space.
The function map, whose standard definition is

l et rec map f l = match l with
| [] −> []
| x : : xs −> (f x) : : (map f xs)

; ;

is not easy to write with an accumulator. To actually write an efficient version of the map function,
one needs to define maprev which maps a function over a list and reverses the order of the list at
the same time using an accumulator:

l et rec mapacc f a l = match l with
| [] −> a
| x : : xs −> mapacc f ((f x) : : a) xs

; ;
l et maprev f l = mapacc f [] l ; ;

With the function maprev defined, one can then define

l et compose f g = fun x −> f (g x) ; ;
l et mapr f = compose rev (maprev f) ; ;

The compose function has a mathematical notation as well: compose f g ≡ f ◦ g.
With these definitions, we have that

∀f : ∀l : mapr f l = map f l

The proof is left as an exercise.

6

3 Exercises

Exercise 1 Prove that for any list l, we have that

l @ [] = l

Exercise 2 Prove that map (f ◦ g) = (map f) ◦ (map g). That is, prove that for any list l, we
have that

map (f ◦ g) l = ((map f) ◦ (map g)) l

Exercise 3 Consider the function

l et rec sum l = match l with
| [] −> 0
| x : : xs −> x + (sum xs)

; ;

i) Prove that (len1 l)=(sum (map (fun x −> 1) l)) for any list l.
(You may use λx.1 instead of fun x −> 1.)

ii) Give a tail-recursive function sum2 that is equal to sum.

iii) Prove that sum2 l=sum l for any list l.

Exercise 4 Prove that mapr = map. That is, prove that for any function f and any list l, we
have that

mapr f l = map f l

Exercise 5 Consider the functions

l et rec f o l d l f a l = match l with
| [] −> a
| x : : xs −> f o l d l (f a x) xs

; ;
l et rec f o l d r f l b = match l with
| [] −> b
| x : : xs −> f x (f o l d r f xs b)

; ;
l et swap f = fun x y −> f y x ; ;

Prove that

f o l d r f l b = f o l d l (swap f) b (rev l)

7

