
Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Evaluation Order

Different programming languages, evaluate in different orders.

Some things are common. E.g.

The conditional if b then x else y end:
First b
Second x or y
Sequential composition S1;S2:
First S1
Second S2

Some things are different or undefined

evaluation order of (sub-)expressions
evaluation order for argument to a function call

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Differences

In Java evaluation order is left-to-right

Using gcc for C:

expression are evaluated left-to-right
function argument are evaluated right-to-left

In OCaml evalutation order is right-to-left, except

S1;S2 (first S1 then S2)
let x=e1 in e2 (first e1 then e2)

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Examples

let m i = Printf.printf "[%d]" i;i;;
val m : int -> int = <fun>
(m 1,m 2,m 3);;
[3][2][1]- : int * int * int = (1, 2, 3)
(+) (m 1) (m 2) ;;
[2][1]- : int = 3
m(1)+m(2);;
[2][1]- : int = 3

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Some remarks

Order is can be semantically irrelevant.
(E.g. no side-effects, no exceptions caught).

Order can have practical impact (E.g. memory use).

Relying on evaluation order is best avoided:

porting code from one language to another becomes difficult
different compiler (version) may have different result

For our equivalence proofs we assume well-behaved functions:

No side effects.
No exceptions thrown.
Terminate for all values.

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Introduction

Lazy Computation means delaying the evaluation of an
expression until the result is needed for the first time
(never evaluating it if the result is never needed).

Always costs some time for testing if result has been
previously computed.

Can save memory if expression small and result big.

Can save time if result is never needed.

Can cost memory if expression is big and result is small.

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Implementation 1

Encode delayed evaluation as a function:

let d = fun () -> m(1);;
val d : unit -> int = <fun>

Problem: expression evaluated every time function is called:

d();;
[1]- : int = 1
d();;
[1]- : int = 1

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Implementation 2

Encode delayed evaluation as a function and memoize:

let d = let x = ref None in
fun () -> match !x with
| None -> let v = m(1) in x:= Some(v);v
| Some(v) -> v

;;
val d : unit -> int = <fun>

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Implementation 2

Better expression evaluated once:

d();;
[1]- : int = 1
d();;
- : int = 1

However: not concise and difficult for compiler.

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Implementation 3

Use the built-in lazy feature and Lazy.force:

let d = lazy (m(1));;
val d : int lazy_t = <lazy>

Concise and evaluated once:

open Lazy;;
force d;;
[1]- : int = 1
force d;;
- : int = 1

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Applications

If we want to know if a (unique) solution exists then we do
not need all solutions.

Enumerating solutions on demand uses much less memory
than generating them all at once.

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Lists

Normal list: compute all elements at once.

Lazy list: compute elements on demand.

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Lazy lists type in OCaml

open Lazy ; ;

type ’ a l a z y l i s t = ’ a l i s t 1 Lazy . t
and ’ a l i s t 1 = N i l | Cons of ’ a ∗ ’ a l a z y l i s t

; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Conversion functions

l e t rec l a z y o f l i s t l = l a z y (match l with
| [] −> N i l
| x : : x s −> Cons (x , l a z y o f l i s t x s)

) ; ;

l e t rec l i s t o f l a z y l = match f o r c e l with
| N i l −> []
| Cons (x , xs) −> x : : (l i s t o f l a z y xs)

; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Map

l e t rec lmap f l = l a z y (match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x , lmap f xs)

) ; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Map step-by-step

We start with the normal version.

l e t rec map f l = match l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x ,map f xs)

; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Map step-by-step

When you match against a lazy list, you force it:

l e t rec map f l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x ,map f xs)

; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Map step-by-step

Every lazy argument of a constructor gets a lazy:

l e t rec map f l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x , l a z y (map f xs))

; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Map step-by-step

The first step must be lazy as well:

l e t rec map f l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x , l a z y (map f xs))

and lmap f l = l a z y (map f l)
; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Map step-by-step

That is equivalent to:

l e t rec map f l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x , lmap f xs)

and lmap f l = l a z y (map f l)
; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Map step-by-step

Which is equivalent to:

l e t rec map f l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x , lmap f xs)

and lmap f l = l a z y (match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x , lmap f xs))

; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Map step-by-step

Which is equivalent to:

l e t rec lmap f l = l a z y (match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> Cons (f x , lmap f xs)

) ; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Filter step-by-step

We start with the normal version.

l e t rec f i l t e r p l = match l with
| N i l −> N i l
| Cons (x , xs) −> i f p x then Cons (x , f i l t e r p xs)

e l s e (f i l t e r p xs)
; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Filter step-by-step

When you match against a lazy list, you force it:

l e t rec f i l t e r p l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> i f p x then Cons (x , f i l t e r p xs)

e l s e (f i l t e r p xs)
; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Filter step-by-step

Every lazy argument of a constructor gets a lazy:

l e t rec f i l t e r p l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> i f p x then Cons (x , l a z y (f i l t e r p xs))

e l s e (f i l t e r p xs)
; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Filter step-by-step

The first step must be lazy as well:

l e t rec f i l t e r p l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> i f p x then Cons (x , l a z y (f i l t e r p xs))

e l s e (f i l t e r p xs)
and l f i l t e r p l = l a z y (f i l t e r p l)
; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Filter step-by-step

This is the same as:

l e t rec f i l t e r p l = match f o r c e l with
| N i l −> N i l
| Cons (x , xs) −> i f p x then Cons (x , l f i l t e r p xs)

e l s e (f i l t e r p xs)
and l f i l t e r p l = l a z y (f i l t e r p l)
; ;

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Homework

Lazy version of @ (lappend).

Lazy version of concat (llconcat).

Length of a lazy list (llength).

Submission by email for grading is optional.

Stefan Blom Functional Programming

Evaluation Order
Lazy Computation

Combinatorics and Lazy Evaluation

Guared Recursion.

A recursive call is guarded it it occurs as the argument of a
constructor.

Performance of list producing functions (map,filter,etc.):
list tail guarded problem
type recursion recursion
normal good bad stack overflow
lazy bad good tail recursion runs to comple-

tion before returning

For element producing functions (e.g. length) tail recursion is
best.

Stefan Blom Functional Programming

	Evaluation Order
	Lazy Computation
	Combinatorics and Lazy Evaluation

