Signature

Definition

A (first order) signature Σ is a tuple $\langle \mathcal{F}, \mathrm{arity} \rangle,$ where

- \bullet \mathcal{F} is a set of function symbols
- arity : $\mathcal{F} \to \mathbb{N}$ assign an arity to every function symbol.

Terms

Definition

Given

- A signature $\Sigma \equiv \langle \mathcal{F}, \operatorname{arity} \rangle$,
- A set of variables \mathcal{V} , such that $\mathcal{V} \cap \mathcal{F} = \emptyset$.

the set of terms over σ and \mathcal{V} the smallest set $\mathcal{T}(\Sigma, \mathcal{V})$, such that

- if $x \in \mathcal{V}$ then $x \in \mathcal{T}(\Sigma, \mathcal{V})$;
- if $f \in \mathcal{F}$, $n = \operatorname{arity}(f)$ and $t_1, \dots, t_n \in \mathcal{T}(\Sigma, \mathcal{V})$ then $f(t_1, \dots, t_n) \in \mathcal{T}(\Sigma, \mathcal{V})$.

Conventions

- ullet From now we assume the existence of a set ${\cal V}$ of variables.
- If arity(c) = 0 then we abbreviate c() by c.

OCaml as terms

```
type 'a mylist = Nil | Cons of 'a * 'a mylist;;
let lst=Cons(1,Cons(3,Cons(5,Nil)));;
let rec length = function
  | Nil -> 0
  | Cons(\_,xs) \rightarrow 1+(length xs)
;;
 arity type expressions normal expressions
       int string ... Nil Ist length () ...
       mylist
                       Cons
  2
                         (.,.) + appl [(f a) stands for appl(f,a)]
  3
                         (....)
Note that let (rec), match and fun are not first order constructs.
```


Variables

The set of variables occurring in a term t is

$$\mathsf{Var}(t) = \left\{ egin{array}{ll} \{x\} & ext{, if } t \equiv x \in \mathcal{V} \ \mathsf{Var}(t_1) \cup \cdots \cup \mathsf{Var}(t_n)), ext{ if } t \equiv f(t_1, \cdots, t_n) \end{array}
ight.$$

Substitution

Definition

Given a signature Σ , and a function $\sigma: \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$, we define $\sigma: \mathcal{T}(\Sigma, \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V}))$, as

$$\sigma(t) = \left\{ egin{array}{ll} \sigma(x) & ext{, if } t \equiv x \in \mathcal{V} \\ f(\sigma(t_1), \cdots, \sigma(t_n)), & ext{if } t \equiv f(t_1, \cdots, t_n) \end{array}
ight.$$

$$[x_1:=t_1,\cdots,x_n:=t_n]$$
 denotes $x\mapsto \left\{egin{array}{ll} t_i & ext{, if } x\equiv x_i \ x & ext{, otherwise} \end{array}
ight.$

Lambda Calculus

The set of lambda terms Λ is the smallest set such that

- if $x \in \mathcal{V}$ then $x \in \Lambda$ [variable];
- if $M, N \in \Lambda$ then $(M N) \in \Lambda$ [application];
- if $x \in \mathcal{V}$, $M \in \Lambda$ then $\lambda x.M \in \Lambda$ [abstraction].
- s t u means ((s t) u)
- $\lambda x.st$ means $\lambda x.(st)$
- $\lambda x y z.M$ means $\lambda x.\lambda y.\lambda z.M$

Variables

The set of variables occurring free in a lambda term t is

$$\mathsf{FV}(t) = \left\{ \begin{array}{l} \{x\} & \text{, if } t \equiv x \in \mathcal{V} \\ \mathsf{FV}(M) \setminus \{x\} & \text{, if } t \equiv \lambda x.M \\ \mathsf{FV}(M) \cup \mathsf{FV}(N), \text{ if } t \equiv MN \end{array} \right.$$

The set of variables bound in a lambda term t is

$$\mathsf{BV}(t) = \left\{ \begin{array}{l} \emptyset & \text{, if } t \equiv x \in \mathcal{V} \\ \mathsf{BV}(M) \cup \{x\} & \text{, if } t \equiv \lambda x.M \\ \mathsf{BV}(M) \cup \mathsf{BV}(N), \text{ if } t \equiv M N \end{array} \right.$$

Finite Substitutions

Let
$$[x_i := t_i]$$
 denote $[x_1 := t_1, \cdots, x_n := t_n]$ then
$$t[x_i := t_i] = \begin{cases} t_i & \text{, if } t \equiv x_i \\ x & \text{, if } x \in \mathcal{V} \text{ and } x \not\in \{x_1, \cdots, x_n\} \\ M[x_i := t_i] \ N[x_i := t_i] & \text{, if } t \equiv M \ N \\ \lambda x. M[x_i := t_i] & \text{, if } t \equiv \lambda x. M \\ & \text{and } x \text{ does not occur in } [x_i := t_i] \\ \lambda z. M[x := z][x_i := t_i] & \text{, if } t \equiv \lambda x. M \\ & \text{and } z \text{ does not occur in } [x_i := t_i] \text{ or } M \end{cases}$$

α -equivalence

- If z does not occur in M then $\lambda x.M$ and $\lambda z.M[x:=z]$ are α -equivalent.
- We think of α -equivalent terms as the same term. E.g.
 - The terms $\lambda x.xy$ and $\lambda z.zy$ are the same term.
 - The terms $\lambda x.xy$ and $\lambda y.yy$ are different terms.

β -reduction

$$(\lambda x.M) \stackrel{N}{\longrightarrow} M[x := N]$$

$$\frac{M \xrightarrow{\beta} M'}{\lambda x.M \xrightarrow{\beta} \lambda x.M'}$$

$$\frac{M \xrightarrow{\beta} M'}{M N \xrightarrow{\beta} M' N} \frac{N \xrightarrow{\beta} N'}{M N \xrightarrow{\beta} M N'}$$

The module system of OCaml

- Modules can contain both type declarations and function declarations.
- Functors are module definitions that take other modules are parameters.
 - Functors are 'evaluated' at compile time.
- The type system has module types, which can be used for hiding implementation details.

