Definition

A (first order) signature X is a tuple (F,arity),
where

@ F is a set of function symbols

@ arity : F — N assign an arity to every function symbol.

anutational
e
Stefan Blom Functional Programming

Terms

Given

@ A signature ¥ = (F, arity),
@ A set of variables V, such that VN F = 0.

the set of terms over o and V the smallest set 7 (X, V), such that
o if x € V then x € T(X%,V);

o if f e F, n=arity(f) and ty,--- ,t, € T7(X,V) then
f(ty, - ,ty) e T(X,V).

Gputational
Tgic
Stefan Blom Functional Programming

Conventions

@ From now we assume the existence of a set V of variables.

e If arity(c) = 0 then we abbreviate ¢() by c.

anutational
e
Stefan Blom Functional Programming

OCaml as terms

type ’a mylist = Nil | Cons of ’a * ’a mylist;;
let 1lst=Cons(1,Cons(3,Cons(5,Nil)));;
let rec length = function

| Nil -> 0

| Cons(_,xs) -> 1+(length xs)

AR

arity type expressions normal expressions

0 intstring ... Nil Ist length () ...
1 mylist Cons
2 * (.,.) + appl [(f a) stands for appl(f,a)]

3 (-1e-)

Note that let (rec), match and fun are not first order constructs.

‘ mputational
Tgic

Stefan Blom Functional Programming

The set of variables occurring in a term t is

| {x} Jift=xeV
Var(t) = { Var(ty) U -« U Var(ty)), if t = f(t1, - , tn)

anutational
e
Stefan Blom Functional Programming

Substitution

Given a signature X, and a function 0 : V — 7(%,V),
we define o : 7(X,V — 7(X,V), as

_J ox) Jift=xeV
o(t) = { flo(t), - ,0(tn)), if t =F(tr, - ,tn)

t; ,ifx=x
x , otherwise

[x1 :== t1,- -, xp := t,] denotes x — {

Gputational
Tgic
Stefan Blom Functional Programming

Lambda Calculus

The set of lambda terms A is the smallest set such that
e if x € V then x € A [variable];
e if M, N € A then (M N) € A [application];
e if x eV, M € A then Ax.M € A [abstraction].

@ stumeans ((st)u)
@ Ax.st means Ax.(st)

@ Axyz.M means Ax.\y.\z.M

Gputational
Tgic
Stefan Blom Functional Programming

The set of variables occurring free in a lambda term t is

{x} Jift=xeV
FV(t) =< FV(M)\{x} ift=XxM
FV(M)UFV(N), if t = M N

The set of variables bound in a lambda term t is
0 Jift=xeV

BV(t)={ BV(M)U{x} ,ift=ix.M
BV(M)UBV(N), if t= M N

‘ mputational
Tgic

Stefan Blom Functional Programming

Finite Substitutions

Let [x; := t;] denote [x := t1,- -+ , X, := t,] then
t; Cif t=x
X yif xeVand x ¢ {xq, -, xn}
M[x; == t;] N[x; :=t;] ,ift=MN
Ax.M[x; := tj] if t =AM

t[X,' = t,'] =

and x does not occur in [x; == tj]
Az.M[x = z][x; :=t;]] ,if t=Ix.M
and z does not occur in [x; := t;] or M

‘ mputational
Tgic

Stefan Blom Functional Programming

a-equivalence

e If z does not occur in M then Ax.M and A\z.M[x := z] are
a-equivalent.

@ We think of a-equivalent terms as the same term. E.g.

o The terms Ax.xy and Az.zy are the same term.
e The terms Ax.xy and Ay.y y are different terms.

Gputational
Tgic
Stefan Blom Functional Programming

(Ax.M) N = M[x := N]

MTM/
)\X.M?)\X.M/
/\/17/\4/ NTN/
/\/INWM'N MN7I\/IN’

Gputational
Tgic
Stefan Blom Functional Programming

The module system of OCaml

@ Modules can contain both type declarations and function
declarations.
@ Functors are module definitions that take other modules are

parameters.
Functors are 'evaluated’ at compile time.

@ The type system has module types, which can be used for
hiding implementation details.

Gputational
Tgic
Stefan Blom Functional Programming

