
Separate Compilation vs Interpreter
Combinatorics

How files correspond to modules.

Compiling name.mli corresponds to interpreting
module type Name = sig
contents of name.mli
end

Compiling name.ml if name.mli exists corresponds to
module Name : Name = sig
contents of name.ml
end

Compiling a file name.ml if name.mli is missing means
module Name = struct
contents of name.ml
end

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Example

Compiling

inc.mli
v a l i n c : i n t −> i n t

inc.ml
l e t i n c x = x+1

main.ml
open I n c ; ;
p r i n t i n t (i n c 3) ; ;
p r i n t n e w l i n e () ; ;

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Example

is the same as interpreting

module type I n c = s i g
v a l i n c : i n t −> i n t

end ; ;
module I n c : I n c = s t r u c t

l e t i n c x = x+1
end ; ;
open I n c ; ;
p r i n t i n t (i n c 3) ; ;
p r i n t n e w l i n e () ; ;

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Small Problem

Files cannot be functors , however

module types can contain module types

module type M = s i g
module type N = s i g

v a l i d : ’ a −> ’ a
end

end ; ;

functors and modules can contain modules and functors

module M = s t r u c t
module N = s t r u c t

l e t i d x = x
end

end ; ;

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

How To Compile

type to produce
ocamlc -c inc.mli inc.cmi
ocamlc -c inc.ml inc.cmo
ocamlc -c main.ml main.cmo
ocamlc -o main inc.cmo main.cmo main
./main 4

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Details

Before compiling a file containing

open Name

name.cmi must have been generated:

by compiling name.mli if it exists
by compiling name.ml otherwise

The order of linking matters:
if F opens G then g.cmo must be to the left of f.cmo

The main module is nothing special:

any module can contain initialization code/main code
code in modules is executed in the order they were linked.

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Comparison

The interpreter

Can read one file and/or standard input.
Gives pretty printing functions for free.

The (byte-code) compiler

Compiles as many files as needed separate or together.
Links objects into binaries.
Makes the user responsible for pretty printing.

The ocamltry script

Collects several .mli and .ml files in a single file.
Starts the interpreter preloaded with that file.
Shows internal details if the .mli is omitted.

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Generating things

seq n k = [n; n + 1; · · · ; k]

sublists xs: the list of all sublists of xs:

sublists [1; 2; 3] = [[]; [1]; [2]; [3]; [1; 2]; [1; 3]; [2; 3]; [1; 2; 3]]

Convention: for a list of lists by default

the order of the returned list is irrelevant
the multiplicity of the elements counts
the order and multiplicity of the elements counts

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Permutations

insert x xs: list of lists obtained by inserting x into xs:

insert 2 [1; 3] = [[2; 1; 3]; [1; 2; 3]; [1; 3; 2]]

permute xs: list of all possible permutations of xs:

permute [1; 2; 3] = [[1; 2; 3]; [1; 3; 2]; [2; 1; 3];
[2; 3; 1]; [3; 1; 2]; [3; 2; 1]]

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Filtering

Remember filter:

l e t rec f i l t e r p l = match l with
| [] −> []
| x : : x s when p x −> x : : (f i l t e r p xs)
| x : : x s −> (f i l t e r p xs)

; ;

sum is n ns: checks if the sum of ns is n.

len is n xs: checks if the length of ns is n.

Stefan Blom Functional Programming

Separate Compilation vs Interpreter
Combinatorics

Application

kakuro n k: generates a list of all possible combinations of k
single digit numbers, such that each number occurs at most
once and the sum of the numbers is n.

possibles ll : given a list of combinations (a combination is a
list) it produces a list of possible values at each position.

possibles [[1; 2]; [3; 2]; [1; 3]; [3; 1]] = [[1; 2]; [1; 2; 3]]

verify lp l : given a list of possible values per position and a
list check if the list has a possible value at each position.

verify [[1; 2]; [2; 1]] [1; 2] = true
verify [[1; 2]; [2; 1]] [1; 3] = false

Stefan Blom Functional Programming

	Separate Compilation vs Interpreter
	Combinatorics

