Separate Compilation vs Interpreter

How files correspond to modules.

@ Compiling name.mli corresponds to interpreting
module type Name = sig
contents of name.mli
end

e Compiling name.ml if name.mli exists corresponds to
module Name : Name = sig
contents of name.ml
end

@ Compiling a file name.ml if name.mli is missing means
module Name = struct
contents of name.ml
end

Gputational
Tgic
Stefan Blom Functional Programming

Separate Compilation vs Interpreter

Example

Compiling
inc.mli
val inc : int — int
inc.ml _
let inc x = x+1
main.ml

open Inc;;
print_int (inc 3);;
print_newline ();;

anutational
Ygic

Stefan Blom Functional Programming

Separate Compilation vs Interpreter

Example

is the same as interpreting

module type Inc = sig
val inc : int —> int
end ;;
module Inc : Inc = struct
let inc x = x+1
end ;;
open Inc;;

print_int (inc 3);;
print_newline ();;

‘ mputational
Tgic

Stefan Blom Functional Programming

Separate Compilation vs Interpreter

Small Problem

Files cannot be functors , however

@ module types can contain module types

module type M = sig
module type N = sig
val id : 'a — ’a
end

end ;;

@ functors and modules can contain modules and functors

module M = struct

module N = struct
let id x = x
end
end;; .
@gumnonal

Stefan Blom Functional Programming

Separate Compilation vs Interpreter

How To Compile

type to produce
ocamlc -c inc.mli inc.cmi
ocamlc -c inc.ml inc.cmo
ocamlc -¢c main.ml main.cmo
ocamlc -0 main inc.cmo main.cmo main
./main 4

‘ mputational
Tgic

Stefan Blom Functional Programming

Separate Compilation vs Interpreter

@ Before compiling a file containing

open Name

name.cmi must have been generated:
e by compiling name.mli if it exists
e by compiling name.ml otherwise
@ The order of linking matters:
if F opens G then g.cmo must be to the left of f.cmo

@ The main module is nothing special:

e any module can contain initialization code/main code
e code in modules is executed in the order they were linked.

Gputational
Tgic
Stefan Blom Functional Programming

Separate Compilation vs Interpreter

Comparison

@ The interpreter
o Can read one file and/or standard input.
o Gives pretty printing functions for free.
@ The (byte-code) compiler
o Compiles as many files as needed separate or together.
e Links objects into binaries.
o Makes the user responsible for pretty printing.
@ The ocamltry script
e Collects several .mli and .ml files in a single file.
e Starts the interpreter preloaded with that file.
e Shows internal details if the .mli is omitted.

Gputational
Tgic
Stefan Blom Functional Programming

Combinatorics

Generating things

@esegqnk=[mn+1; ;K|

@ sublists xs: the list of all sublists of xs:
sublists [1;2;3] = [[I; [1]; [2]; [3]; [1; 2] [1; 3] [2: 3]; [1; 2; 3]]

Convention: for a list of lists by default

o the order of the returned list is irrelevant
e the multiplicity of the elements counts
e the order and multiplicity of the elements counts

Gputational
Tgic
Stefan Blom Functional Programming

Combinatorics
Permutations

@ insert x xs: list of lists obtained by inserting x into xs:

insert 2 [1;3] =[[2;1;3]; [1;2; 3]; [1; 3; 2]]

@ permute xs: list of all possible permutations of xs:

permute [1;2;3] =[[1,2;3];[1;3;2];[2; 1; 3];
[2;3;1];[3: 1, 2]; [3;2; 1]]

Gputational
Tgic
Stefan Blom Functional Programming

Combinatorics

Filtering

@ Remember filter:

let rec filter p | = match | with

1 =1
| x::xs when p x = x :: (filter p xs)
| x::xs —> (filter p xs)

@ sum_is n ns: checks if the sum of ns is n.

@ len_is n xs: checks if the length of ns is n.

Gputational
Tgic
Stefan Blom Functional Programming

Combinatorics
Application

@ kakuro n k: generates a list of all possible combinations of k
single digit numbers, such that each number occurs at most
once and the sum of the numbers is n.

@ possibles II: given a list of combinations (a combination is a
list) it produces a list of possible values at each position.

possibles [[1;2]; [3;2]; [1;3]; [3; 1]] = [[1; 2]; [1; 2; 3]]

e verify Ip I: given a list of possible values per position and a

list check if the list has a possible value at each position.
verify [[1;2];[2;1]] [1;2] = true
verify [[1;2]; [2; 1]] [1; 3] = false

Gputational
Tgic
Stefan Blom Functional Programming

	Separate Compilation vs Interpreter
	Combinatorics

