
Project 1: ordered trees

Stefan Blom

30.3.2007

Problem

We consider three types of ordered trees:

• AVL trees

• (2,4) trees

• Red Black trees

For background information on those trees, look at the material on e-
campus1. Some code fragments are available on the course main site2.
Hickey’s book contains an insert for Red-Black trees.

For each of these trees, you must implement:

• insert takes a tree and an element as arguments and returns a tree
whose elements are the elements of the old tree plus the new element.

• remove takes a tree and an element as arguments and returns a tree.
If the element does not occur in the given tree then the given tree is
returned. Otherwise a new tree is returned whose elements are the
elements of the old tree minus one occurrence of the new element.

• get takes a tree as argument and returns None if the tree is empty
and Some(a,t) otherwise, where a is the least element of the given
tree and t is a tree whose elements are the elements of the given tree
minus one occurrence of a.

To test these functions, you must implement insertion sort:
1http://e-campus.uibk.ac.at/
2http://cl-informatik.uibk.ac.at/teaching/ss07/fp/course material.php

1



• insertion_sort has 4 arguments:

– empty constant

– insert function

– get function

– list

It returns a sorted version of the list, which it obtains by first inserting
all elements into the empty structure and then building a list by getting
all elements from the structure:

s := empty
for e in list do
s := insert s e

end
list := []
loop
case get(s) of
| None -> return list
| Some(a,t) -> list.append(a) ; s := t

end

Please note that you own implementation should be recursively defined
and not use loops.

Rules

• You can work alone or in pairs.

• If you work alone then you may choose to skip either (2,4) trees or
Red Black trees.

• A working implementation means a passing grade.

• Elegance and readability count as well.

• Carefully selected auxiliary functions help to reduce your workload
and improve readability and elegance.

2


