
Type Systems
Functional Programming SS2007

Stefan Blom

Revision: 1.9

1 Type Checking

In this section, we explain how to prove that a certain expression has a certain type. First, we need
to fix what types are.

1.1 Types

Types are built from a set of type variables TVar (typical element α, β, α1, α
′, · · ·.)

Definition 1.1 The set of types Type is the least set such that

• For any type variable α, we have that α is a type.

• Given types τ1, τ2, the function type or arrow type τ1 → τ2 is a type.

• If t is a type constructor with arity n and τ1, · · · , τn are types then t(τ1, · · · , τn) is a type.

The arrow is right-associative. That is,

α → β → γ = α → (β → γ)

Also, for some proofs and constructions we view the arrow type as a binary type constructor:

τ1 → τ2 =→ (τ1, τ2)

A type is typically denoted with a τ with annotations (superscripts, subscripts, primes, etc.)
For unknown type constructors we use c, f, g, t with various annotations. Type constructors, like
function sysmbols have an arity. Examples of type constructors of arity 0 are bool, int and char.
An example of a type constructor of arity 1 is list.

1.2 lambda calculus

The full OCaml syntax is rather extensive, so we start with its core the lambda calculus first. A
lambda calculus expression is built from variables, application and abstraction:

M,N ::= x | M N | λx.M

1

A variable by itself is unknown, so we must assume some type for it. The assumption are stored
in a type environment A. A type environment is a comma separated list of type assumptions of
the form x : τ . For example: x : int, y : int. A typing judgement is a statement A ` e : τ . The
meaning of this statement is that given variables of the types mentioned in the environment A, the
expression e if provably of type τ .

To find variables in the environment, we view A as a partial function:

A(x) =

τ , if A = A′, x : τ
A′(x) , if A = A′, y : τ, x 6= y
⊥ , otherwise

For example, (x : α, y : β︸ ︷︷ ︸
A

)(x) = α, A(y) = β, A(z) =⊥. With this partial function, we can define

the typing rule for variables:
A(x) 6=⊥

A, x : τ ` x : A(x)

Meaning that is the type of x is defined in A then we can derive that x is of the given type.
An application M N is of type τ , if N is of a certain type τ ′ and M is a function which takes

arguments of type τ ′ and has results of type τ . Formally:

A ` M : τ ′ → τ A ` N : τ ′

A ` M N : τ

For example, if we have a function plus that takes two integers and returns an integer and two
integer x and y then plus x y is of type integer. That is we want to derive:

plus : int → int → int, x : int, y : int ` plus x y : int

This is done by building the proof tree

A(plus) = int → int → int

A ` plus : int → int → int

A(x) = int

A ` x : int

A ` plus x : int → int

A(y) = int

A ` y : int

plus : int → int → int, x : int, y : int︸ ︷︷ ︸
A

` plus x y : int

An abstraction λx.M stands for a function that takes an argument x and evaluates M . The
rule for typing this expression is

A, x : τ ` M : τ ′

A ` λx.M : τ → τ ′

So to prove that a function, taking an argument x of type τ returns a value of type τ ′, we must
prove that M is of type τ ′ assuming that x is of type τ .

For example, λx.x can be proven to be of type α → α:

x : α ` x : α

` λx.x : α → α

2

Similarly, we can derive that λx y.x is of type α → β → α:

x : α, y : β ` x : α

x : α ` λy.x : β → α

` λx y.x : α → β → α

Exercise 1.1 Derive the following type judgements:

(a) plus : int → int → int ` λx.plus xx : int → int

(b) ` λx y z.(x z)(y z) : (α → β → γ) → (α → β) → α → γ

(c) ` λf g x.(f(g x)) : (α → β) → (β → γ) → (α → γ).

Hint: introducing shorthand by underbracing a type or type environment and assigning it a name
makes proofs shorter and more readable.

1.3 extensions of lambda calculus

The typing rule for the let is
A ` M : τ ′ A, x : τ ′ ` N : τ

A ` let x = M in N : τ

We can prove that let id = λx.x in id (λx.x) : α → α as follows:

x : α → α ` x : α → α

` λx.x : (α → α) → (α → α)

id : τ ` id : τ

x : α ` x : α

` λx.x : α → α

id : (α → α) → (α → α)︸ ︷︷ ︸
τ

` id (λx.x) : α → α

` let id = λx.x in id (λx.x) : α → α

1.4 A subset of ocaml

The type system in the previous section allows us to prove types for several constructs in OCaml,
but it is not powerfull enough yet. For example, there is no type τ such that we can derive
` let id = λx.x in id id : τ .

The problem is that when we derive a type for the let, we must fix the type of id. Once the
type is fixed we cannot apply id to itself anymore. This is different from OCaml, where if we define
let id x = x;; we can then legally write write id id. The difference is that we have a type system
that can only deal with concrete types, whereas the type system of OCaml also has universal types
or polymorphic types. That is, if we write let id x = x;; then we define a variable id of type α → α.
(The ’a in OCaml corresponds to α.) This must be read as for any replacement τ of α, we have
that id : τ → τ .

However, if we were to allow this in general then the resulting type inference problem would
be undecidable. Thus, we will treat pre-defined symbols different the symbols being defined. For

3

the pre-defined symbols, we use universal types. For the symbols being defined, we use concreate
types.

Another feature of OCaml is that we can define types. The most important of these is the
algebraic type. If we define an algebraic type then we add a type constructor and several (term)
constructors. For example, defining

type ’ a t r e e = Leaf | Node of ’ a t r e e ∗ ’ a ∗ ’ a t r e e ; ;

add a unary type constructor tree, a constant Leaf of type tree(α) and a ternary constructor Node
of type tree(α) ∗ α ∗ tree(α) → tree(α).

To be able to deal with these definitions of types and functions, we view the previously defined
environment as a local part and add a global part E to our environment. This global part consists
of two environments E = (C;F), where:

C = c1 : τ c
1 , · · · , cl : τ c

l Constructors
F = f1 : τ1, · · · , fn : τn defined Function symbols

the possible types for constructors (τ c
1 , · · · , τ c

l) are limited to types of the form t(~α) or τ1 ∗· · ·∗τn →
t(~α) for n > 0. Note that the arity of a constructor can always be deduced from the type.

To express this, we will now have judgements of the form

E;A ` e : τ

where E is a global environment and A is a local environment. Looking up variables, is now a
two-step procedure. First, we look in the local environment. Second, we look in the function part
of the global environment. The first step is covered by the rule

A(x) 6=⊥

E;A ` x : A(x)

The second step is covered by a new rule:

A(x) =⊥ F (x) 6=⊥ σ : TVar → Type

(C;F);A ` x : F (x)σ

The first two conditions ensure that x is defined in F but not in A. The third condition is not
really a condition, but more a quantifying statement meaning that for any substitution σ the rule
applies. By applying the substitution σ to the universal type of x, we instantiate the type of x.

With these rules, we have that

ε(id) =⊥ (id : α → α)(id) = α → ασ : x 7→ x

(C; id : α → α); ε ` id : α → α

and
ε(id) =⊥ (id : α → α)(id) = α → ασ = [α := α → α]

(C; id : α → α); ε ` id : (α → α) → (α → α)

The motivation for these steps is too long for convenience, the only essential information is the
substitution. If there is no confusion possible we can omit it:

(C; id : α → α); ε ` id : α → α

4

Otherwise, we can write it like:

[α := α → α]

(C; id : α → α); ε ` id : (α → α) → (α → α)

The proof rules for application and abstraction are adapted as follows:

E;A ` M : τ ′ → τ E;A ` N : τ ′

E;A ` M N : τ

E; (A, x : τ) ` M : τ ′

E;A ` λx.M : τ → τ ′

The rule for the let becomes:

E;A ` M : τ ′ E; (A, x : τ ′) ` N : τ

E;A ` let x = M in N : τ

To deal with definitions at top level, we consider a program to be a list of type definitions, function
declarations and expressions. At the top level, the local environement is always empty so we omit
it. This gives us four rules:

(C;F) ` ε

The emtpy program can always be typed.

(C;F); f : τ ` M : τ(C;F, f : τ) ` P

(C;F) ` letrec f = M ; ; P

A program starting with a recursive function can be typed if we can type the right-hand side of
the definition with a type τ while locally assuming that the function being defined is also of type
τ and we can type the remainder of the program while globally assuming that the function is of
type τ .

(C;F); ε ` M : τ(C;F, f : τ) ` P

(C;F) ` letrec M ; ; P

A program starting with an expression can be typed if both the expression and the remainder can
be typed.

(C, c1 : t(~α), · · · , cm : t(~α), d1 : τ1 → t(~α), · · · , dn : τn → t(~α);F) ` P

(C;F) ` type t(~α) = c1 | · · · | cm | d1 of τ1 | · · · dn of τn; ; P

A program starting with a type definition can be typed if we can type the remainder, while adding
the declaration.

Constructors in OCaml are symbols that have an arity, which can be derived from the type.
If the type of a constructor c is t(~α) then the arity of c is 0. If the type of c is of the form
τ1 ∗ · · · ∗ τn → t(~α) then the arity of c is n, where if n = 1, we have that τ1 is not a tuple.

We have two special cases of constructors: tuples and lists.
Tuples are embedded in OCaml, by using (type) constructors ∗n for n ≥ 2. We have the

abbreviations
∗n(τ1, · · · , τn) = τ1 ∗ · · · ∗ τn

n(M1, · · · ,Mn) = (M1, · · · ,Mn)

for type constructors and (expression) constructors, respectively.

5

Lists use a unary type constructor list E.g. list(α) (written in ASCII as ’a list), a constant []
and a binary constructor ::, written in infix notation.

The typing rules for constructors are:

C(c) = t(~α) σ : TVar → Type

(C;F);A ` c : t(~α)σ

and

C(c) = τ1 ∗ · · · ∗ τn → t(~α) σ : TVar → Type (C;F);A ` M1 : τ1σ · · · (C;F);A ` Mn : τnσ

(C;F);A ` c(M1, · · · ,Mn) : t(~α)σ

What we will do next is a give typing rule for the match expression

matchM with| p1 when c1 → N1 · · · | pn when cn → Nn

To prove this match statement of type τ , we must prove M to be of a chosen type τ ′ first and then
for each of the cases, we must choose types for the variables in the pattern Ai and then for that
choice prove that the pattern pi has type τ ′, the condition ci has type bool and the expression Ni

has type τ .

E;A ` M : τ ′ for i = 1 · · ·n : pi GV Ai E;A,Ai ` pi : τ ′ E;A,Ai ` ci : bool E;A,Ai ` Ni : τ

E;A ` matchM with| p1 when c1 → N1 · · · | pn when cn → Nn : tau

where

x GV x : τ

p1 GV A1 pn GV An

t(p1, · · · , pn) GV A1, · · · , An

2 Type Inference

In the previous section, we have shown how to prove that λx y.x is of type α → β → γ. In this
section, we will concern ourselves with the task of inferring the type of a given expression.

Type inference is based on the idea that we build a set of equations in such a way that if we
solve the set of equations, we have a proof of the type of the expression. For example: if we want
to prove that

` λx y.x : α1

Then we need to show that

x : α2 ` λy.x : α3 for α1 ≈ α2 → α3

In turn this requires that we prove

x : α2, y : α4 ` x : α5 for α3 ≈ α4 → α5

Which can be proven if α2 ≈ α5. In tree form this reads as:
α2 = α5

x : α2, y : α4 ` x : α5 α3 = α4 → α5

x : α2 ` λy.x : α3 α1 = α2 → α3

` λx y.x : α1

6

So we need to solve the set of equations

α1 ≈ α2 → α3, α3 ≈ α4 → α5, α2 ≈ α5

This task is known as unification.

2.1 Unification of Type Expressions

Unification is the task of finding a substitution, such that for a given set of equations applying the
substitution to the left and right-hand sides yields that same type expression.

2.1.1 Problem Definition

Definition 2.1 Given a set of equation of type variables,

E = {τ1 ≈ τ ′
1, · · · , τn ≈ τ ′

n}

a unifier of E is a substitition σ, such that

τ1σ = τ ′
1σ ∧ · · · ∧ τnσ = τ ′

nσ

Any given set of equations has many solutions. We say that one solution is more general
than a second solution, if the second solution can be decomposed into the first solution plus some
modifications.

Definition 2.2 Given a set of equations E. We say that a unifier σ1 is more general than a unifier
σ2 (denoted σ1 v σ2) if we can find a substitution σ′

1 such that σ2 = σ1σ
′
1.

The best possible solution to a set of equation is of course a solution which is more general than
any other solution. Such a solution is known as a most general unifier.

Definition 2.3 Given a set of equations E. A unifier σ is a most general unifier if for all unifiers
σ′, we have σ @ σ′.

2.1.2 Substitutions

If σ1 and σ2 are substitutions then we denote their composition with as follows:

σ1σ2
def= σ2 ◦ σ1

Because function composition is associative, we get that substitution composition is associative as
well:

σ1(σ2σ3) = (σ1σ2)σ3 .

The same holds for applying substitutions to terms:

(tσ1)σ2 = t(σ1σ2) .

Finite substitutions are denoted with a list of bindings:

[x1 := t1, · · · , xn := tn] def= x 7→
{

ti , if x = xi for i ∈ {1, · · · , n}
x , otherwise

7

function mgu(E) is
if E = ∅ then return []; else

take eq from E;
if eq ≡ τ ≈ τ then return mgu(E); end;
if eq ≡ α ≈ τ or eq ≡ τ ≈ α then

if α occurs in τ then FAIL; end ;
E := {u[α := τ] ≈ v[α := τ] | u ≈ v ∈ E};
return [α := τ] mgu(E);

end;
if eq ≡ f(τ1, · · · , τn) ≈ g(τ ′

1, · · · , τ ′
k) then

if f 6= g or n 6= k then FAIL; end;
for i in 1 to n do add τi ≈ τ ′

i to E ; end;
return mgu(E);

end;
end;

end mgu;

Table 1: Unification with recursion.

Proposition 2.4 Given two finite substitutions

σ1 = [x1 := t1, · · · , xn := tn] and σ2 = [y1 := t′
1, · · · , ym := t′

m]

such that
{y1, · · · , yK} ∩ {x1, · · · , xn} = ∅ and {yK+1, · · · , ym} ⊆ {x1, · · · , xn}

then
σ1σ2 = [x1 := t1σ2, · · · , xn := tnσ2, y1 := t′

1, · · · , yK := t′
K]

2.1.3 The Algorithm

Finding a most general unifier for a set of equations can be done recursively by analysing a given
set of equations. If the set is empty then any substitution is a unifier and [] is a mgu. If the set
is not empty then we pick one of the equations. If it is an equation of the form τ ≈ τ then any
substitution is a unifier so we consider the remaining equations. If the equation of the for α ≈ τ or
τ ≈≈ then if α occurs in τ , a unifier cannot exist. This can be seen by counting symbols. Suppose σ
is a unifier of α ≈ τ and α occurs in τ then τ cannot be α because the first cause does not apply. So
τ has at least two symbols, including an α that means that τσ contains σ(α) and at least one more
symbol. So τσ has at least one more symbol than ασ. If τ does not contain α then we must have
that α = τ , so we apply the substitutions [α := τ] to the remaining equations. The other case is
f(τ1, · · · , τn) ≈ g(τ ′

1, · · · , τ ′
k) If f 6= g or n 6= k then there does not exists a substitution that unifies

this equation otherwise it depends if we can unify the argument, so we add τ1 ≈ τ ′
1, · · · , τn ≈ τ ′

n to
the set of equations. In table 1, this algorithm has been written out using recursion. Table 2 has
a version that uses a while loop.

We continue by proving the correctness, but to do so we need two measures on sets of equations.
By |E|vars we denote the number of different variables occurring in E. By |E|syms we denote the

8

number of symbols in the terms in E. If

E = {α ≈ β → α}

then |E|vars = 2 (the variables are α and β) and |E|syms = 4 (there is one α, two β’s and one →;
the ≈ does not count).

Proposition 2.5 If mgu(E) returns a substitution then that substitution is a most general unifier.

Proof. We need to prove two statements:

(i) If mgu(E) returns a substitution then that substitution is a unifier of E.

(ii) If σ is a unifier of E then σ v mgu(E).

(i) Proof by induction on (|E|vars, |E|syms) using lexicographic ordering.
If E = ∅ then mgu(E)=[], which is a unifier of E.
If E = {eq} ∪ E′ then we must distinguish cases for eq:

• If eq ≡ τ ≈ τ then any substitution is a unifier of { eq }. By induction hypothesis
mgu(E) is a unifier of E′. If a substitution is a unifier of two sets of equation then it is
a unifier for the union, so mgu(E) is a unifier of E.

• Consider the case eq ≡ α ≈ τ or eq ≡ τ ≈ α. If α occurs in τ then mgu does not return a
substitution, so α does not occur in τ . That means that E′[α := τ] contains one variable
less than E, so by induction hypothesis mgu(E′[α := τ]) is a unifier of E′[α := τ].
Therefore [α := τ]mgu(E′[α := τ]) is a unifier of E′. Because α does not occur in τ , we
have that [α := τ]mgu(E′[α := τ]) is a unifier of {eq} so [α := τ]mgu(E′[α := τ]) is a
unifier of E.

• If eq ≡ f(τ1, · · · , τn) ≈ g(τ ′
1, · · · , τ ′

k) and f 6= g or n 6= k then mgu(E) does not return a
substitution so f = g and n = k. Let E′′ = {τ1 ≈ τ ′

1, · · · , τn ≈ τ ′
k} ∪ E′. By induction

hypothesis mgu(E′′) is a unifier of E′′. That means that

f(τ1, · · · , τn)mgu(E′′) = f(τ1mgu(E′′), · · · , τnmgu(E′′)) definition of substitution
= f(τ ′

1mgu(E′′), · · · , τ ′
nmgu(E′′)) mgu(E′′) is a unifier of E′′.

= g(τ ′
1mgu(E′′), · · · , τ ′

kmgu(E′′)) f = g, n = k
= g(τ ′

1, · · · , τ ′
k)mgu(E′′) definition of substitution

So, mgu(E′′) is a unifier of { eq} and hence E.

(ii) Proof by induction on (|E|vars, |E|syms) using lexicographic ordering.
If E = ∅ then mgu(E) = [] v σ.
If E = {eq} ∪ E′ then we must distinguish cases for eq:

• If eq ≡ t = t then σ is a unifier of E′, so

mgu(E) = mgu(E′)
IH
v σ

9

procedure mgu(E) is
let σ = [];
while E 6= ∅ do

take eq from E;
if eq ≡ τ ≈ τ then next; end;
if eq ≡ α ≈ τ or eq ≡ τ ≈ α then

if α occurs in τ then FAIL ; end ;
E := {u[α := τ] ≈ v[α := τ] | u ≈ v ∈ E};
σ := σ[α := τ];

end;
if eq ≡ f(τ1, · · · , τn) ≈ g(τ ′

1, · · · , τ ′
k) then

if f 6= g or n 6= k then FAIL; end;
for i in 1 to n do add τi ≈ τ ′

i to E ; end;
end;

end;
return σ;

end mgu;

Table 2: Unification with a while-loop.

• Consider the case eq ≡ α ≈ τ or eq ≡ τ ≈ α. If α occurs in τ then mgu does not return a
substitution, so α does not occur in τ . Because σ is a unifier of E, we have that ασ = τσ.
From this it follows that σ = [α := τ]σ. Hence [α := τ]σ is a unifier of E′, which means
that σ is a unifier of E′[α := τ]. By induction hypothesis we get

(mgu)(E′[α := τ]) v σ

If σ1 v σ2 then σ′σ1 v σ′σ2 so

(mgu)(E) = [α := τ](mgu)(E′[α := τ]) v [α := τ]σ = σ

• If eq ≡ f(τ1, · · · , τn) ≈ g(τ ′
1, · · · , τ ′

k) and f 6= g or n 6= k then mgu(E) does not return a
substitution so f = g and n = k. Let E′′ = {τ1 ≈ τ ′

1, · · · , τn ≈ τ ′
k} ∪ E′. If σ is a unifier

of E then σ is a unifier of E′′ as well so

(mgu)(E) = (mgu)(E′′) v σ

�

3 The type inference algorithm.

In this section, we present a type inference algorithm for recursive definitions

letrec x = M ; ;

The algorithm has three steps. First, we label the definition of M with type variables. Second, we
extract a set of equations. Third, we solve the equations.

10

3.1 Examples

Consider the definition
letrec id = λx.x ; ;

First, we label this definition:

letrec id : α = (λx : α.x : α) : β ; ;

That is, we attach a type variable to every sub-term and every binder (the x in λx.M or let x =
M in N). In principle, every sub-term is labeled with a fresh variable. However, we make an
exception for bound variables. Bound variables get the same label as the variable they are bound
to. So λx.y x might be labeled as (λx : α.(y : β) (x : α)) : γ, but not as (λx : α.(y : β) (x : δ)) : γ.

The second step is to extract type equations. For the top level, we must have that the labels of
the left and right-hand sides are identical:

α ≈ β

For every subterm of the form (λx : α1.M : α2) : α3, we get an equation α3 ≈ α1 → α3:

β ≈ α → α

Subterms of the form x : α are correctly typed if the type of the variable is the same as the type
of the binder, which is taken care of by definition.

This gives us the equations
α ≈ β, β ≈ α → α

A mgu for this set of equations is

[α := α → α, β := α → α]

Consider the definition
letrec f = λx.id id x ; ;

A labeled version of this definition is

letrec f : α1 = (λx : α2.(((id : α3) (id : α4)) : α5 (x : α2)) : α6) : α7 ; ;

It is easier to see how the labeling occurs in a parse tree. The equation

f = λ

zz
zz

zz HHHHH

x appl

vv
vv CCC

CC

appl

yy
yy III

II
x

id id

11

is labeled as
f : α1 = λ : α7

oooooo
PPPPPP

x : α2 appl : α6

nnnnnn
NNNNNN

appl : α5

ooooo
PPPPPP

x : α2

id : α3 id : α4

Note how, the bound variable x gets the label α2. Also note that the variable id, which was
previously defined gets a different label for every occurrence on purpose.

The old cases for generating equations give us

α1 ≈ α7, α7 ≈ α2 → α6

We have two new cases for generating equations.

• For every application ((M : β1)(N : β2)) : β3, we add β1 ≈ β2 → β3. For our example this
means

α5 ≈ α2 → α6, α3 ≈ α4 → α5

• For every occurrence of a previously defined variable x : α, we must find the type τ of x;
create a fresh instance τ ′ of x and add the equation α ≈ τ ′. Informally an instance is a
renaming of a type, where every type variable is replaced by a fresh one. Thus, we need two
fresh instances of α → α. We take α8 → α8 and α9 → α9 and thus we get the equations

α3 ≈ α8 → α8, α4 ≈ α9 → α9

The resulting set of equations is

{α1 ≈ α7, α7 ≈ α2 → α6, α5 ≈ α2 → α6, α3 ≈ α4 → α5, α3 ≈ α8 → α8, α4 ≈ α9 → α9}

For a computer, evaluating the mgu of such a tiny set of equations is easy. For a human, evaluating
the mgu of a medium sized set of equations is already too much work without some speed-ups. We
have a few speed-ups:

• If you are not interested in every variable, but just in γ then leave an equation γ ≈ τ until
the end. (Unless γ occurs in τ .)

• If you have equations
α1 ≈ τ1, · · · , αn ≈ τn︸ ︷︷ ︸

E

such that αi does not occur in τj for i, j = 1 · · ·n then

mgu(E,E′) = [α1 := τ1, · · · , αn := τn]︸ ︷︷ ︸
σ

mgu(E′σ)

• You can do more than one equation f(τ1, · · · , τn) ≈ g(τ ′
1, · · · , τ ′

k) in one step.

12

If we underline the equations seleted then these speedups are applied as follows.

{α1 ≈ α7, α7 ≈ α2 → α6, α5 ≈ α2 → α6, α3 ≈ α4 → α5, α3 ≈ α8 → α8, α4 ≈ α9 → α9}

Removing the selected equations and applying [α3 := α8 → α8, α4 := α9 → α9] yields

{α1 ≈ α7, α7 ≈ α2 → α6, α5 ≈ α2 → α6, α8 → α8 ≈ α9 → α9 → α5}

remove and apply [α7 := α2 → α6]

{α1 ≈ α2 → α6, α5 ≈ α2 → α6, α8 → α8 ≈ α9 → α9 → α5}

[α5 := α2 → α6]
{α1 ≈ α2 → α6, α8 → α8 ≈ α9 → α9 → (α2 → α6)}

simplifying
{α1 ≈ α2 → α6, α8 ≈ α9 → α9, α8 ≈ α2 → α6}

[α8 := α9 → α9]
{α1 ≈ α2 → α6, α9 → α9 ≈ α2 → α6}

{α1 ≈ α2 → α6, α9 ≈ α2, α9 ≈ α6}

[α9 := α2]
{α1 ≈ α2 → α6, α2 ≈ α6}

[α2 := α6]
{α1 ≈ α6 → α6}

[α1 := α6 → α6]
∅

The mgu σ can be computed by evaluating

σ = [α3 := α8 → α8, α4 := α9 → α9][α7 := α2 → α6][α5 := α2 → α6][α8 := α9 → α9][α9 := α2][α2 := α6][α1 := α6 → α6]

But we do not have to do that. We only need σ(α1), which is

σ(α1) = α6 → α6

So the type of f is α6 → α6.

If a function cannot be typed then the solving will fail. For example

letrec w = λx.x x ; ;

Get labeled as
letrec w : α1 = (λx : α2.((x : α1) (x : α1)) : α3) : α4 ; ;

which gives rise to the equations

α1 ≈ α4, α4 ≈ α2 → α3, α1 ≈ α1 → α3

which cannot be solved because α1 occurs in α1 → α3 6= α1.

13

As a realistic example, let us consider

letrec len = fun l → match l with| [] → 0 | x :: xs → 1 + (len xs) ; ;

To make things more readable, we write the labels below the sub-expression rather than inside of
it:

letrec len︸︷︷︸
α1

= fun l︸︷︷︸
α2

→ match l︸︷︷︸
α2

with| []︸︷︷︸
α3

→ 0︸︷︷︸
α4

| x︸︷︷︸
α5

:: xs︸︷︷︸
α6︸ ︷︷ ︸

α7

→ 1︸︷︷︸
α8

+(len︸︷︷︸
α1

xs︸︷︷︸
α6

)︸ ︷︷ ︸
α9︸ ︷︷ ︸

α10︸ ︷︷ ︸
α11︸ ︷︷ ︸

α12

; ;

Note that the occurrences of x and xs in the pattern x :: xs are binding occurrences, so the bound
occurrence of xs gets the same label.

For the definition we get
α1 ≈ α12

For the function we get
α12 ≈ α2 → α11

For the match, the patterns must have the same type as the expression doing the case distinction
on:

α2 ≈ α3, α2 ≈ α7

and the results of each case must match the type of the match:

α4 ≈ α11, α10 ≈ α11

For constructor, we must create instances as well. The constructor [] is of type list(α), so we use
list(α13) as instance and add

α3 ≈ list(α13)

0 is a constructor of type int, so
α4 ≈ int

:: is of arity 2 and type α ∗ list(α) → list(α). We use the instance α14 ∗ list(α14) → list(α14) and get
3 equations

α5 ≈ α14, α6 ≈ list(α14), α7 ≈ list(α14)

+ is of type int → int → int, which gives us:

α8 ≈ int, α9 ≈ int, α10 ≈ int

The application gives
α1 ≈ α6 → α9

The whole set of equations is

{ α1 ≈ α12, α12 ≈ α2 → α11, α2 ≈ α3, α2 ≈ α7, α4 ≈ α11, α10 ≈ α11, α3 ≈ list(α13), α4 ≈ int,
α5 ≈ α14, α6 ≈ list(α14), α7 ≈ list(α14), α8 ≈ int, α9 ≈ int, α10 ≈ int, α1 ≈ α6 → α9}

14

[α12 := α1]

{ α1 ≈ α2 → α11, α2 ≈ α3, α2 ≈ α7, α4 ≈ α11, α10 ≈ α11, α3 ≈ list(α13), α4 ≈ int,

α5 ≈ α14, α6 ≈ list(α14), α7 ≈ list(α14), α8 ≈ int, α9 ≈ int, α10 ≈ int, α1 ≈ α6 → α9}

[α3 := list(α13), α4 := int, α6 := list(α14), α7 ≈ list(α14), α8 ≈ int, α9 ≈ int, α10 ≈ int]

{ α1 ≈ α2 → α11, α2 ≈ list(α13), α2 ≈ list(α14), [int ≈ α11,]int ≈ α11, α5 ≈ α14, α1 ≈ list(α14) → int}

[α2 := list(α14), α11 := int, α5 := α14]

{ [α1 ≈ list(α14) → int,]list(α14) ≈ list(α13), α1 ≈ list(α14) → int}

{α14 ≈ α13, α1 ≈ list(α14) → int}

[α13 := α14]
{α1 ≈ list(α14) → int}

Ergo, a mgu σ exists such that σ(α1) = list(α14) → int. This means that len has type list(α14) → int,
which we can rename to list(α) → int

3.2 Formal definition

To properly define what an instance is, we recall the definition of variables in a term translated to
type expressions:

Var(x) = {x}
Var(τ1 → τ2) = Var(τ1) ∪ Var(τ2)
Var(c(τ1, · · · , τn) = Var(τ1) ∪ · · · ∪ Var(τn)

Then we can define

Definition 3.1 A type expression τ ′ is a (fresh) instance of a type expression τ if

τ ′ = τ [α1 := β1, · · · , αn := βn]

where
Var(τ) = {α1, · · · , αn} (and β1, · · · , βn are fresh)

Definition 3.2 The labeled version of

letrec x = M ; ;

is
letrec x : α = L(x : α, M) ; ;

15

where α is fresh and

L(A,M) =

x : A(x)
M = x,A(x) 6=⊥

x : α
M = x,A(x) =⊥, α fresh

(λx : α1.L(A, x : α1,M
′)) : α2

M = λx.M ′, α1, α2 fresh
(L(A,M1),L(A,M2)) : α

M = M1,M2, α fresh
c(L(A,M1), · · · ,L(A,M2)) : α

M = c(M1, · · · ,Mn)α fresh
(let x : α1 = L(A,M1) in L(A, x : α1,M2)) : α2

M = let x = M1 in M2, α1, α2 fresh
(matchL(A,M0) with | L(A,A1, p1) when L(A,A1, c1) → L(A,A1,M1)

...
| L(A,An, pn) when L(A,An, cn) → L(A,An,Mn)) : α

M = matchM0 with| p1 when c1 → M1 · · · | pn when cn → Mn,
α fresh, Ai = alloc(pi)

and

alloc(p) =
{

x : α p = x, α fresh
alloc(p1), · · · , alloc(pn) p = c(p1, · · · , pn)

Definition 3.3 Given and environment (C,F) a labeled recursive definition

letrec x : α1 = M : α2 ; ;

The generated equations are
α1 ≈ α2, eqs(M : α2)

16

where

eqs(M : α) =

ε
M = x

α ≈ τ
M = x, τ fresh instance of F (x) 6=⊥

α ≈ α1 → α2, eqs(M ′ : α2)
M = λx : α1.M

′ : α2

α1 = α2 → α, eqs(M1 : α1), eqs(M2 : α2)
M = (M1 : α1)(M2 : α2)

α ≈ τ
M = c, T (c) = 0, τ fresh instance of C(c)

α ≈ τ, eqs(M1 : τ1), · · · , eqs(Mn : τ2)
M = c(M1, · · · ,Mn), T (c) = n > 0,
(τ1 ∗ · · · ∗ τn → τ) fresh instance of inst(C(c))

α ≈ α2, α0 ≈ α1, eqs(M1 : α1), eqs(M2 : α2)
M = let x : α0 = M1 : α1 in M2 : α2

α ≈ α1, · · · , α ≈ αn, eqs(M1 : α1), · · · , eqs(Mn : αn),
β ≈ β1, · · · , β ≈ βn, eqs(p1 : β1), · · · , eqs(pn : βn),
γ1 ≈ bool, · · · , γn ≈ bool, eqs(c1 : γ1), · · · , eqs(cn : γn)

M = matchM0 : β with | p1 : β1 when c1 : γ1 → M1 : α1
...
| pn : βn when cn : γn → Mn : αn

4 Exercises

Exercise 4.1 Implement unification on type expressions. The algorithm works equally well if E
is a list rather than a set, so you can represent a unification problem as a list of pairs of type
expressions. For example, the problem

α1 ≈ α2 → α3, α3 ≈ α4 → α5, α2 ≈ α5

translates to

[(TVar”a1” ,TCons(”−>” , [TVar”a2” ; TVar ”a3”])) ;
(TVar”a3” ,TCons(”−>” , [TVar”a4” ; TVar ”a5”])) ;
(TVar”a2” ,TVar”a5”)]

The following modules are provided:

Aux A module with auxiliary functions.

Map An abstract data type that can map a finite set of keys to values.

Types A module that contains a data type for type expression. We use maps as finite subtitutions.
Applying substitution to a term and the composition of two substitutions have already been
implemented.

Exercise 4.2 Let τ1 = f(α, f(β, f(α, beta))) and τ2 = α → β → α. Compute τ1σ and τ2σ for

17

a σ = [α := β].
b σ = [α := f(α, β), β := f(β, β), γ := α]
c σ = [α := int, β := list(bool), γ := α → β]

Exercise 4.3 Given
σ1 = [α := α → α]
σ2 = [α := β, β := α]
σ3 = [β := α → γ]

Compute
a σ1σ2

b σ2σ1

c σ1σ3

d σ3σ1

e σ2σ3

f σ3σ2

Exercise 4.4 Compute a mgu (if one exists) for the following sets of equations:
a {f(g(α, β), α, β) ≈ f(γ, g(β, β), β)}
b {g(h(α), g(α, β)) ≈ g(γ, g(g(α, α), γ))}
c {f(α, g(α, β), h(β)) ≈ f(g(γ, γ), α, α)}.

Exercise 4.5 Below, we define the function int enum, which takes an initial value n and returns
a function, which returns on n + i− 1 on the ith call. (That is, it returns n, n + 1, n + 2, · · ·.)

l et int enum f i r s t =
l et n = r e f f i r s t in
fun () −> l et i = ! n in n := i+1 ; i

; ;

Write a function var enum that takes a base string s and returns a function that will return s0,
s1, s2, etc. For example, with that function we should be able to get the following results.

let fresh = var_enum "alpha";;
val fresh : unit -> string = <fun>
fresh();;
- : string = "alpha0"
fresh();;
- : string = "alpha1"
fresh();;
- : string = "alpha2"

Other useful functions: string concatenation (^), and int ↔ string conversion: string of int and
int of string .

Exercise 4.6 Write a function variant that given a generator for fresh variables and a type ex-
pression returns a fresh variant of the type expression. For example

18

let t = TCons("list",[TVar "a2"]);;
val t : Types.type_expr = TCons ("list", [TVar "a2"])
let fresh = var_enum "a";;
val fresh : unit -> string = <fun>
variant fresh t;;
- : Types.type_expr = TCons ("list", [TVar "a0"])
variant fresh t;;
- : Types.type_expr = TCons ("list", [TVar "a1"])
variant fresh t;;
- : Types.type_expr = TCons ("list", [TVar "a2"])
variant fresh t;;
- : Types.type_expr = TCons ("list", [TVar "a3"])

Note that when we ask for the third variant, we actually get the original type back. This is correct
behavior because the variables used in universal types use a separate name space from the variables
used for labeling.

Exercise 4.7 Manually infer the types of Compute a mgu (if one exists) for the following sets of
equations:
a λx.x
b λx y.x
c λx y z.(x z)(y z)

Exercise 4.8 Manually infer the type of

letrec reva ; ; fun a → fun xs → matchxs with| [] → a | x :: xs → reva(x :: a)xs

19

