
Functional Programming
http://cl-informatik.uibk.ac.at/teaching/ss07/fp/

Stefan Blom

Computational Logic
Institute of Computer Science

University of Innsbruck

SS 2007

Stefan Blom Functional Programming

http://cl-informatik.uibk.ac.at/teaching/ss07/fp/


Goals

Learn how to ...

1 use the functional programming language OCaml

2 implement a functional programming language

3 prove properties about a functional program

Stefan Blom Functional Programming



Evaluation

50 points for small programming projects

50 points for written final exam

need 50 points to pass

First written exam in last week: Juli 4, 8.00 - 10.00.

Anrechnung as ’Programming in OCaml’ for Masters students

Stefan Blom Functional Programming



Reading material

Jason Hickey, An Introduction to the Objective Caml
Programming Language
http://mojave.caltech.edu/jyh/publications.html

The OCaml reference manual
http:
//caml.inria.fr/pub/docs/manual-ocaml/index.html

Stefan Blom Functional Programming

http://mojave.caltech.edu/jyh/publications.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html


programming projects

In principle everybody works alone

Examples:

Tree data types: Heaps, AVL trees, Red-Black trees, etc.
Combinator Parser
Type Inference Engine
Interpreter for toy-ML
Japanese puzzles: Kakuro, Sudoku, etc.

Current set allows some choice

but not enough: feel free to suggest your own project(s)

Stefan Blom Functional Programming



What makes OCaml different?

everything is an expression
E.g. inc : n 7→ n + 1 is written as fun n -> n+1
You can bind the name inc with:

let inc = fun n -> n+1;;

pattern matching
E.g. factorial

n! =

{
1 , if n = 0
n · (n − 1)! , otherwise

is defined as

let rec factorial x = match x with
| 0 -> 1
| n -> n * factorial(n-1)

;;

Stefan Blom Functional Programming



How does pattern matching work?

factorial 3
→ match 3 with

|0 → 1
|n → n ∗ factorial(n − 1)

→ match 3 with
|n → n ∗ factorial(n − 1)

→ 3 ∗ factorial(3− 1)
→ 3 ∗ factorial(2)
→ 3 ∗ (2 ∗ factorial(1))
→ 3 ∗ (2 ∗ (1 ∗ factorial(0)))
→ 3 ∗ (2 ∗ (1 ∗ 1))
→ 3 ∗ (2 ∗ 1)
→ 3 ∗ 2
→ 6

Stefan Blom Functional Programming



Lists

the list of x1 up to xn is denoted as [x1; · · · ; xn]

which really stands for x1 :: (x2 :: (· · · (xn :: []) · · · )
all elements x1, · · · , xn must have the same type:

[1; 2; 3] is a list of integers
1 :: 2 :: 3 :: [] and 1 :: [2; 3] are equivalent
[”X”; ”r”] is a list of strings
[[1]; [1; 2]] is a list of lists of integers
[1; [1; 2]] is illegal

Stefan Blom Functional Programming



pattern matching on lists

Length of a list:

let rec length x = match x with
| [] -> 0
| x :: xs -> 1 + (length xs)

or

let rec length = function
| [] -> 0
| x :: xs -> 1 + (length xs)

Removing double occurences

let rec uniq = function
| x1::x2::xs when x1 = x2 -> uniq(x2::xs)
| x :: xs -> x :: uniq(xs)
| [] -> []

Stefan Blom Functional Programming



Higher order functions

The function map is specified by

map f [x1; · · · ; xn] = [f x1; · · · ; f xn]

It can be defined as

let rec map f = function
| [] -> []
| x :: xs -> (f x)::(map f xs)

Note that map (fun n -> n+1) is a legal expression.
That is map has a function as argument and returns a
function.

Other functions are

fold left � e [x1; · · · ; xn] = ((· · · ((e � x1) � x2) · · · ) � xn)
fold right � [x1; · · · ; xn] e = (x1 � (· · · (xn � e) · · · ))

Stefan Blom Functional Programming



Q & A

Q What is the ’greek letter equivalent’ of fun n -> n+1?

A λn.n + 1 which is \n.n+1 in ASCII.

Q Does C have an equivalent for fun n -> n+1?

A No, not as an expression

Q Does Java have an equivalent for fun n -> n+1?

A Yes, if you declare

interface Function{
public int call(int x);

}

then fun n -> n+1 can be written as

new Function(){public int call(int x){return x+1;}}

This feature is called anonymous class.

Stefan Blom Functional Programming


