Functional Programming

http://cl-informatik.uibk.ac.at/teaching/ss07/fp/

Stefan Blom

Computational Logic
Institute of Computer Science
University of Innsbruck

$$
\text { SS } 2007
$$

Goals

Learn how to ...
(1) use the functional programming language OCaml
(2) implement a functional programming language
(3) prove properties about a functional program

Evaluation

- 50 points for small programming projects
- 50 points for written final exam
- need 50 points to pass
- First written exam in last week: Juli 4, 8.00-10.00.
- Anrechnung as 'Programming in OCaml' for Masters students

Reading material

- Jason Hickey, An Introduction to the Objective Caml Programming Language
http://mojave.caltech.edu/jyh/publications.html
- The OCaml reference manual http:
//caml.inria.fr/pub/docs/manual-ocaml/index.html

programming projects

- In principle everybody works alone
- Examples:
- Tree data types: Heaps, AVL trees, Red-Black trees, etc.
- Combinator Parser
- Type Inference Engine
- Interpreter for toy-ML
- Japanese puzzles: Kakuro, Sudoku, etc.
- Current set allows some choice
- but not enough: feel free to suggest your own project(s)

What makes OCaml different?

- everything is an expression
E.g. inc : $n \mapsto n+1$ is written as fun $n \rightarrow n+1$

You can bind the name inc with:
let inc = fun n -> $\mathrm{n}+1$;

- pattern matching
E.g. factorial

$$
n!= \begin{cases}1 & , \text { if } n=0 \\ n \cdot(n-1)! & , \text { otherwise }\end{cases}
$$

is defined as
let rec factorial $\mathrm{x}=$ match x with
| $0 \rightarrow 1$
| n -> n * factorial(n-1)
; ;
factorial 3
\rightarrow match 3 with

$$
\begin{aligned}
& \mid 0 \rightarrow 1 \\
& \mid n \rightarrow n * \text { factorial }(n-1)
\end{aligned}
$$

\rightarrow match 3 with

$$
\mid n \rightarrow n * \text { factorial }(n-1)
$$

$\rightarrow 3 *$ factorial $(3-1)$
$\rightarrow 3 *$ factorial(2)
$\rightarrow 3 *(2 *$ factorial $(1))$
$\rightarrow 3 *(2 *(1 *$ factorial $(0)))$
$\rightarrow 3 *(2 *(1 * 1))$
$\rightarrow 3 *(2 * 1)$
$\rightarrow 3 * 2$
$\rightarrow 6$

- the list of x_{1} up to x_{n} is denoted as $\left[x_{1} ; \cdots ; x_{n}\right]$
- which really stands for $x_{1}::\left(x_{2}::\left(\cdots\left(x_{n}::[]\right) \cdots\right)\right.$
- all elements x_{1}, \cdots, x_{n} must have the same type:
- $[1 ; 2 ; 3]$ is a list of integers
- $1:: 2:: 3::[]$ and $1::[2 ; 3]$ are equivalent
- [" $X^{\prime \prime} ; " r$ "] is a list of strings
- [[1]; [1; 2]] is a list of lists of integers
- [1; [1; 2]] is illegal

pattern matching on lists

- Length of a list:
let rec length $\mathrm{x}=$ match x with
| [] $\quad>0$
| x :: xs -> 1 + (length xs)
or

```
let rec length = function
| [] -> 0
| x :: xs -> 1 + (length xs)
```

- Removing double occurences
let rec uniq = function
| $\mathrm{x} 1:: \mathrm{x} 2:: \mathrm{xs}$ when $\mathrm{x} 1=\mathrm{x} 2$-> uniq($\mathrm{x} 2:: \mathrm{xs}$)
| x :: xs $->\mathrm{x}::$ uniq(xs)
| [] -> []

Higher order functions

- The function map is specified by

$$
\operatorname{map} f\left[x_{1} ; \cdots ; x_{n}\right]=\left[f x_{1} ; \cdots ; f x_{n}\right]
$$

- It can be defined as
let rec map $f=$ function
| [] -> []
| x : : xs -> (f x): (map f xs)
- Note that map (fun $n \rightarrow n+1$) is a legal expression. That is map has a function as argument and returns a function.
- Other functions are
fold_left $\diamond e\left[x_{1} ; \cdots ; x_{n}\right]=\left(\left(\cdots\left(\left(e \diamond x_{1}\right) \diamond x_{2}\right) \cdots\right) \diamond x_{n}\right)$ fold_right $\diamond\left[x_{1} ; \cdots ; x_{n}\right] e=\left(x_{1} \diamond\left(\cdots\left(x_{n} \diamond e\right) \cdots\right)\right)$

Q What is the 'greek letter equivalent' of fun $n->n+1$?
A $\lambda n . n+1$ which is $\backslash \mathrm{n} . \mathrm{n}+1$ in ASCII.
Q Does C have an equivalent for fun $\mathrm{n}->\mathrm{n}+1$?
A No, not as an expression
Q Does Java have an equivalent for fun n -> $\mathrm{n}+1$?
A Yes, if you declare interface Function\{ public int call(int x); \}
then fun n -> $\mathrm{n}+1$ can be written as
new Function() \{public int call(int x)\{return $x+1 ;\}\}$
This feature is called anonymous class.

