value

O

true, false
1,2, -
1.0,1.,2.5, ---
’a’,\verb'b'+
llhi"

type
unit
bool
int
float
char
string

anutational
Ygic

Stefan Blom Functional Programming

Expressions

expression result type

2 % 3 6 int

2.0 x. 3.0 6. float

fun n -> nx*2 <fun> int -> int

(fun n -> n*x2) 2 4 int

(%) <fun> int -> int -> int
(*x) 2 <fun> int -> int
(x)23 6 int

‘ mputational
Tgic

Stefan Blom Functional Programming

value type

O unit

1) =1 int

(1,1) int * int

(1,true,’a’) int * bool * char

anutational
Ygic

Stefan Blom Functional Programming

Algebraic Data Types

@ Definition
type ’a mylist = Nil | Cons of ’a * ’a mylist
type ’a tree = Leaf | Node of ’a * ’a tree * ’a tree

type (’a, ’b) union = A of ’a | B of ’b

e Formally: type (‘a1,---,’a,) name = tagy | --- |tagn,
where
e name must start with a lower case letter.
e tag;is

@ An atomic constructor: Name

@ A non-atomic constructor with argument:Name of type,
where type is a type expression in which 'ar,--- ,’a, may
occur.

where name must start with an upper case letter and

@ Values
Nil, Cons(1,Nil), Leaf, Node(1,Leaf,Leaf), ... Gpasiona
;glC

Stefan Blom Functional Programming

Expressions (without regarding types)

Let e; and e be expressions.
@ If c is a constant then c is an expression.
If name is defined then it is an expression.
The application e ey is an expression.
The sequential composition e ; e is an expression.

If Name is an atomic constructor then Name is an expression

If Name is a non-atomic then Name e is an expression.
Note that in this case Name itself is not an expression.

The abstraction fun name -> e is an expression.
If © is an operator then (¢) is an expression.
If © is a unary then ¢e; is an expression.

If o is a binary then e; ¢ €2 is an expression.

If e1,--- , e, are expressions then (ey,--- , e,) is an expressio

mputational
g

Stefan Blom Functional Programming

Pattern matching

@ A pattern is
P ::= _| ident | Atom | Cons P | (P,---, P) | constant

where an identifier may not occur twice or more.
E.g. Cons(a,x) is a pattern and Cons(x,x) is not.
See reference manual for other possibilities.
e If p1,---, pp are patterns and e, ¢y, ,Cp, €1, €, are
expressions then
match e with
| prwhenc — e

| pn when ¢, — e,
is an expression.

‘ mputational
Tgic

Stefan Blom Functional Programming

@ If 1 and e are expressions then
let name = e; in &
is an expression.

o If e is an expression and ey, - - - , e, are value expressions
(functions or constructors or constants) then

let rec name; = e; and - --and name, = e, in e

is an expression.

Gputational
Tgic
Stefan Blom Functional Programming

o At top level, we write
let name = ey;;
€2,
and
let rec name; = e; and - - -and name, = ép;;
€,

to enable separate compilation and reuse of definitions

Gputational
Tgic
Stefan Blom Functional Programming

short long

|p—e | p when true — e
fxi-x,=e f=funx; —---fun x, — e
funp — e fun x — match x with | p — e
let p=¢ in & match e with | p — &

if ¢ then e else e match ¢ with | true — e | false — &

Gputational
Tgic
Stefan Blom Functional Programming

