
Process Algebra
Verification Using Model Checking - SS 2007

Stefan Blom

2007/06/25 14:13:35 v1.5

1 Basic Process Algebra

A process (p, py, pz) is a term built from several constructs.
The most basic constructs are

• atomic actions (a, b) taken from the set Act;

• sequential composition of two processes (p · q);

• choice between or alternative composition of two processes (p + q).

In addition to these three construct, we also have the deadlock (δ).
Like in mathemathics, we often write b · c as bc.
To correspond to Uppaal, we consider a set of channels Chan and build our set of actions as

Act = {c!, c? | c ∈ Chan} ∪ {τ,wait}

The two action τ and wait are special. The action τ is known as the invisible action. It is used to
model the situation that we can observe that the system performs a step, but not which step. In
some other process algebras (e.g. LOTOS) it is denoted i rather than τ . The waitaction denotes a
time delay of one time unit.

The semantics of these processes is ternary relation −→. When we write p a−→ q, we mean that
the process p can perform an a step to become the process q. We use an auxiliary symbol √

(pronounced tick) to denotes successful termination. When we write p a−→ √, we mean that p can
terminate by performing an a step.

A process graph of a process p is a rooted directed graph built as follows:

1. The root is p and p is put on the todo list.

2. While the todo list is not empty, take an element q from the todo list. For every transition
q a−→ √ add a new node √ and an edge, labeled with a from q to the new node. For every
transition q a−→ q′, if no node q′ exists create q′ and put q′ on the todo list. Regardless of the
previous existence add an edge labeled a from q to q′

1

For example, if we denote the todo list by underlining then the process graph of a + bc might
be built as:

a + bc a + bc
a

||yy
yy

yy
yy

y

b
!!DD

DD
DD

DD
D

√
c

a + bc
a

||yy
yy

yy
yy

y

b
""EEEEEEEEE

√
c

c

��√

Process graphs can be translated to Uppaal templates as follows:

1. We have a clock x.

2. Every node in the graph becomes a location in the Uppaal template.

3. The root node becomes the initial location.

4. If an edge is labeled with wait, it gets a guard x==1 and assigment x=0 otherwise it gets a
guard x==1 (and no assignment).

5. If a node has a wait-edge it gets an invariant x<=1 otherwise it gets an invariant x<=0.

6. The waitand τ labels are deleted.

Consider the process c? · d! + wait · δ.
The process graph is

c? · d! + wait · δ
c?

xxpppppppppppp
wait

&&MMMMMMMMMMMM

d!

d!
��

δ

√

The Uppaal template corresponding to that

graph is

x<=0x<=0

x<=1

x==1
x=0

x==0
d!

x==0
c?

A bisimulation is a relation R on processes, such that if p R q then all of the following:

• If p a−→ √ then q a−→ √

• If q a−→ √ then p a−→ √

• If p a−→ p′ then ∃q′. q a−→ q′ ∧ p′ R q′

• If q a−→ q′ then ∃p′. p a−→ p′ ∧ p′ R q′

Two process p and q are bisimular (p ↔ q) if a bisimulation R exists, such that p R q.

2

2 Parallel Composition

The semantics of parallel composition is controlled by two functions the communication function
γ : Act× Act → Act ∪ {δ} and the interleaving function γ : Act → Act ∪ {δ}.

The communication function specifies if two actions can happen in parallel and if so, what the
result is. We define this function as

γ(a, b) =

τ , if ∃c. {a, b} = {c!, c?}
wait , if {a, b} = {wait}
δ , otherwise

That is, a send and a receive can happen at the same time resulting in an invisible step; two wait
steps can happen at the same time resulting in a wait step and no other actions can happen at the
same time.

The interleaving function specifies if an action can happen by itself and if so what the result is.
It is defined as

γ(a) =

{
δ , if a = wait
a , otherwise

That is, all action can happen by themselves, except wait.
The process graph of c! || c? is

c! || c?
c!

}}{{{{{{{{
τ

��

c?

!!CC
CC

CC
CC

C

c?

c?
��

√
c!

c!
��√ √

Given a set H ⊂ Act \ {τ}, we add the encapsulation of ∂H(p) to our syntax. Encapsulation
is meant to insure that the actions in H can only be used internally. If we omit H then we mean
H = {c!, c? | c ∈ Chan}.

The process graph of ∂(c! || c?) is
∂(c! || c?)

τ

��√

Exercise 2.1
Use the axioms to prove the following processes equal to a process that uses actions, deadlock,
sequential composition and choice only.

(a) c!c! || c?c?

(b) ∂(c!c! || c?c?)

(c) ∂(c?c! || c?c?)

3

(d) c!δ || c?c!

(e) ∂(τc! || τc?c?)

Exercise 2.2
Draw the process graphs of

(a) c! || d!(c? + d?)

(b) (c! + d?c!) bb d!c?

(c) ∂(c!d! ||(d! + c?d?))

(d) c! + d!c! | d?c?

3 Recursive Definitions

We add process variables (X, Y, Z) as processes.
A recursive definition (E,F) is a set of equations whose left-hand sides are unique variables:

{Xi = pi | i ∈ I} such that Xi = Xj ⇒ i = j

A process is guarded if every recursion variable is preceeded by an action:

• a is guarded

• p · q is guarded if p is guarded

• p || q is guarded if p and q are guarded

• p bb q is guarded if p is guarded

• p | q is guarded if p and q are guarded

• ρH(p) is guarded if p is guarded

A recursive definition is guarded if every right-hand side is guarded.
To reason about recursive definitions we have two principles. The Recursive Declaration Prin-

ciple, which states that any equation can be used as an axiom. And the Recursive Specification
Principle, which states that if a set of process terms over a recursive definition E satisfies a disjoint
set of guarded equations F then the terms are equal to the corresponding variables in F .

Given a recursive definition E, some terms pi over E and a guarded recursive definition F =
{Yi = qi | i ∈ I}, such that none of the left-hand side variables of E occurs in F and none of the
left-hand side variables of F occurs in E or some pi. Then to prove that in E ∪F we have pi = Yi,
it suffices to prove that in E we can prove F [Yi = pi]. That is, in E we must prove pk = qk[Yi = qi].

For example, given
E = {X = a ·X}

we can define pY = pZ = X and derive

pY = X = a ·X = a · pZ and pZ = X = a ·X = a · pY

4

therefore we have
X = pY = Y, pZ = Z

where
Y = a · Z,Z = a · Y

Another example. Given
X = a · Y, Y = b · a · Y

we have
a · Y = a · b · a · Y

If we define pZ = a · Y then this can be read as

pZ = a · b · pZ

so we have
pZ = Z

where
Z = a · b · Z

Because X = a · Y = pZ , we have
X = Z

Direct proofs are not always possible. For example, to prove that

X = U

where
X = a ·X + b · Y, Y = a · Y + b ·X

and
U = a · V + b · U, V = a · U + b · V

we need to introduce
Z = a · Z + b · Z

and prove X = Z and Y = Z separately. The first case is

Z︸︷︷︸
pX

= a · Z︸︷︷︸
pX

+b · Z︸︷︷︸
pY

and Z︸︷︷︸
pY

= a · Z︸︷︷︸
pY

+b · Z︸︷︷︸
pX

hence pX = X and pY = Y . The second case is similar.

Exercise 3.1
A singleton bag is bag which can contain at most one element. We define a singleton bag that can
contain a 1 or a 2 as follows:

Bag1 = (c1? · c1! + c2? · c2!) · Bag1

We can define a bag with unlimited capacity over {1, 2} as

Bag∞ = c1? · (c1! ‖ Bag∞) + c2? · (c2! ||Bag∞)

5

(a) We can also define the singleton bag as:

Bag′ = c1? · c1! · Bag′ + c2? · c2! · Bag′

Prove that the two definitions are equal. That is, prove that

Bag1 = Bag′

(b) Prove that two infinite bags in parallel are equivalent to a single infinite bag. That is, prove
that

Bag∞ = Bag∞ ||Bag∞

6

