
Process Algebra
LTL

Translating Process Algebra to Uppaal

Declare processes with channels as parameters.

Allow linear equations only:

X = a! + c? + a!.Y + c?.Z Z = δ

τ tau
δ delta

systems are parallel compositions of processes (with channels
as arguments).

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Example

chan a

proc x is
X = a! . X
in X

proc y(c,d) is
Y = c? . Y + d? . Z
Z = delta
in Y

system x || y(a,a)

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Encapsulation

Given H ⊂ Σ, we add syntax ∂H(p).

The operator ∂H disallows action from H.

E.g. if γ(a, b) = c then

a || b = ab + ba + c

and
∂{a,b}(a || b) = c

We need this operator to express that in Uppaal there is no
communication with the outside world.

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Transition rules for encapsulation

x v−→ √
v 6∈ H

∂H(x) v−→ √
x v−→ x ′ v 6∈ H

∂H(x) v−→ ∂H(x ′)

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Axioms for encapsulation

D1 ∂H(v) = v v 6∈ H
D2 ∂H(v) = δ v ∈ H
D3 ∂H(δ) = δ
D4 ∂H(x + y) = ∂H(x) + ∂H(y)
D5 ∂H(x · y) = ∂H(x) · ∂H(y)

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Stuttering

Intuitively means moving between states with the same
atomic propositions.

A run is a sequence of subsets of Prop:

S ′
1 S ′

2 S ′
3 · · ·

Defining
S1 = S , Sn+1 = S Sn,

we can uniquely write any run π as

Sn1
1 Sn2

2 Sn3
3 · · ·

where Si 6= Si+1.

The stutter free variant of π, denoted E (π), is

S1 S2 S3 · · ·

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Stuttering Invariance

An LTL formula φ is stutter invariant if

π, 0 |= φ ⇔ E (π), 0 |= φ

The fragment of LTL, without the next time operator X is
stutter invariant. This fragment is denoted LTL-X.

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Safety properties

Intuitively it is a property that says that bad things never
happen.

A safety property is a property that allows failure detection in
finitely many steps.

Given a property.

A bad prefix is a finite prefix of a computation for which the
property fails, such that any computation starting with the
same prefix also fails the property.
The property is a safety property is every failing computation
has a bad prefix.

The following class of LTL formula’s are safety formula’s

φs ::= p | ¬p | φs ∧ φs | φs ∨ φs | X φs | φs R φs

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Liveness properties

Intuitively it is a property that says that good things happen
infinitely often.

For LTL we can just say that a property is a liveness property
if it isn’t a safety property.

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Fairness

Intuitively it means that everybody gets their turn.

Let there be N processes 1 ≤ i ≤ N.

Weak fairness If from a certain point in the computation a
step is continuously enabled (pi ) then it is executed infinitely
often (qi ).∧

1≤i≤N

(♦�pi → �♦qi ) ∼
∧

1≤i≤N

�♦(¬pi ∨ qi )

Strong fairness If a step is infinitely often enabled then it is
infinitely often executed.∧

1≤i≤N

(�♦pi → �♦qi )

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Model Checking and Fairness

To check whether a property holds for fair computations, we
can obviously check the formula

fairness → property

Unfortunately, many tools will experience an exponential
blow-up in the number of processes.

If you are lucky, the tool will have support for fairness

Otherwise, you will have to do the work yourself.

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Fairness for continuously enabled processes.

Let process be a variable containing the process that made the last
step.
Given a Büchi Automaton and K processes, make K + 2 copies
(0, · · · ,K + 1) of the Büchi automaton.

Remove the acceptance conditions from all copies, except
copy 0.

In copy 0, redirect edges starting in accepting states to copy 1.

In copy i (1 ≤ i ≤ K ) duplicate the edges to the next copy
with the extra condition process = i and add the condition
process 6= i to every old edge.

In copy k + 1, redirect all edges to copy 0.

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Fairness for processes, which once enabled, remain enabled
until taken.

Given a Büchi Automaton and K processes, make K + 2 copies
(0, · · · ,K + 1). of the Büchi automaton.

Remove the acceptance conditions from all copies, except
copy 0.

In copy 0, redirect edges starting in accepting states to copy 1.

In copy i (1 ≤ i ≤ K ) duplicate the edges to the next copy
with the extra condition [process = i or process i not enabled]
and add the condition [process 6= i and process i enabled] to
every old edge.

In copy k + 1, redirect all edges to copy 0.

Stefan Blom Verification using Model Checking



Process Algebra
LTL

Monitoring fairness of communication

Given N channels 1, · · · ,N.

Suppose that every computation has infinitely many receive
operations.

Declare an integer state and a boolean fair.

Set state to 0 and fair to true.

For every receive:

If state is 0 then set fair to false and state to 1.
If state is 1, · · · ,N and the receive is on channel state or
channel state is empty then increase state.
If state is N + 1 then set fair to true and state to 0.

The LTL formula �♦fair expresses fairness of communication.

The CTL formula fair --> not fair and
not fair --> fair together expresses fairness of all
computations.

Stefan Blom Verification using Model Checking


	Process Algebra
	LTL

