
Process Algebra
LTL

Translating Process Algebra to Uppaal

Declare processes with channels as parameters.

Allow linear equations only:

X = a! + c? + a!.Y + c?.Z Z = δ

τ tau
δ delta

systems are parallel compositions of processes (with channels
as arguments).
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Example

chan a

proc x is
X = a! . X
in X

proc y(c,d) is
Y = c? . Y + d? . Z
Z = delta
in Y

system x || y(a,a)
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Encapsulation

Given H ⊂ Σ, we add syntax ∂H(p).

The operator ∂H disallows action from H.

E.g. if γ(a, b) = c then

a || b = ab + ba + c

and
∂{a,b}(a || b) = c

We need this operator to express that in Uppaal there is no
communication with the outside world.
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Transition rules for encapsulation

x v−→ √
v 6∈ H

∂H(x) v−→ √
x v−→ x ′ v 6∈ H

∂H(x) v−→ ∂H(x ′)
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Axioms for encapsulation

D1 ∂H(v) = v v 6∈ H
D2 ∂H(v) = δ v ∈ H
D3 ∂H(δ) = δ
D4 ∂H(x + y) = ∂H(x) + ∂H(y)
D5 ∂H(x · y) = ∂H(x) · ∂H(y)
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Stuttering

Intuitively means moving between states with the same
atomic propositions.

A run is a sequence of subsets of Prop:

S ′
1 S ′

2 S ′
3 · · ·

Defining
S1 = S , Sn+1 = S Sn,

we can uniquely write any run π as

Sn1
1 Sn2

2 Sn3
3 · · ·

where Si 6= Si+1.

The stutter free variant of π, denoted E (π), is

S1 S2 S3 · · ·
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Stuttering Invariance

An LTL formula φ is stutter invariant if

π, 0 |= φ ⇔ E (π), 0 |= φ

The fragment of LTL, without the next time operator X is
stutter invariant. This fragment is denoted LTL-X.
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Safety properties

Intuitively it is a property that says that bad things never
happen.

A safety property is a property that allows failure detection in
finitely many steps.

Given a property.

A bad prefix is a finite prefix of a computation for which the
property fails, such that any computation starting with the
same prefix also fails the property.
The property is a safety property is every failing computation
has a bad prefix.

The following class of LTL formula’s are safety formula’s

φs ::= p | ¬p | φs ∧ φs | φs ∨ φs | X φs | φs R φs
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Liveness properties

Intuitively it is a property that says that good things happen
infinitely often.

For LTL we can just say that a property is a liveness property
if it isn’t a safety property.
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Fairness

Intuitively it means that everybody gets their turn.

Let there be N processes 1 ≤ i ≤ N.

Weak fairness If from a certain point in the computation a
step is continuously enabled (pi ) then it is executed infinitely
often (qi ).∧

1≤i≤N

(♦�pi → �♦qi ) ∼
∧

1≤i≤N

�♦(¬pi ∨ qi )

Strong fairness If a step is infinitely often enabled then it is
infinitely often executed.∧

1≤i≤N

(�♦pi → �♦qi )
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Model Checking and Fairness

To check whether a property holds for fair computations, we
can obviously check the formula

fairness → property

Unfortunately, many tools will experience an exponential
blow-up in the number of processes.

If you are lucky, the tool will have support for fairness

Otherwise, you will have to do the work yourself.
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Fairness for continuously enabled processes.

Let process be a variable containing the process that made the last
step.
Given a Büchi Automaton and K processes, make K + 2 copies
(0, · · · ,K + 1) of the Büchi automaton.

Remove the acceptance conditions from all copies, except
copy 0.

In copy 0, redirect edges starting in accepting states to copy 1.

In copy i (1 ≤ i ≤ K ) duplicate the edges to the next copy
with the extra condition process = i and add the condition
process 6= i to every old edge.

In copy k + 1, redirect all edges to copy 0.
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Fairness for processes, which once enabled, remain enabled
until taken.

Given a Büchi Automaton and K processes, make K + 2 copies
(0, · · · ,K + 1). of the Büchi automaton.

Remove the acceptance conditions from all copies, except
copy 0.

In copy 0, redirect edges starting in accepting states to copy 1.

In copy i (1 ≤ i ≤ K ) duplicate the edges to the next copy
with the extra condition [process = i or process i not enabled]
and add the condition [process 6= i and process i enabled] to
every old edge.

In copy k + 1, redirect all edges to copy 0.
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Monitoring fairness of communication

Given N channels 1, · · · ,N.

Suppose that every computation has infinitely many receive
operations.

Declare an integer state and a boolean fair.

Set state to 0 and fair to true.

For every receive:

If state is 0 then set fair to false and state to 1.
If state is 1, · · · ,N and the receive is on channel state or
channel state is empty then increase state.
If state is N + 1 then set fair to true and state to 0.

The LTL formula �♦fair expresses fairness of communication.

The CTL formula fair --> not fair and
not fair --> fair together expresses fairness of all
computations.
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