- Symbolic: Manipulate sets of states.
 - Represent a state as a record of booleans.
 - Represent a set of states as a boolean formula (BDD/CNF).
 - Typically large sets can be represented with small formula's.
 - Worst case for N states with K variables is $\mathcal{O}(N \cdot K)$.
- Explicit: Manipulate single states.
 - Represent a state as a term (tree).
 - Represent a set of states as a container over terms (trees).
 - Worst case for N states with K variables is $\mathcal{O}(N \cdot K)$.
 - Best case is $\mathcal{O}(N)$ is possible.

Representing sets of states

If the variables used are \vec{x} then

• A set of states $S \subseteq \{T, F\}^n$ is a formula $\phi_S(\vec{x})$, such that

$$(b_1, \cdots, b_n) \in S \text{ iff } \phi_S(\vec{b})$$

• A binary relation $R \subseteq \{T, F\}^n \times \{T, F\}^n$ on states is a formula $\phi_R(\vec{x}, \vec{x'})$, such that

$$(b_1, \cdots, b_n) R (b'_1, \cdots, b'_n)$$
 iff $\phi_R(\vec{b}, \vec{b'})$

• Operation on sets translate to operations on formulas:

$$\begin{array}{lll} S^{0} &=& p \wedge \overline{q} \wedge \overline{s_{1}} \wedge \overline{s_{0}} \\ S &=& (p \wedge \overline{q} \wedge \overline{s_{1}} \wedge \overline{s_{0}}) \vee (\overline{p} \wedge q \wedge \overline{s_{1}} \wedge s_{0}) \vee (p \wedge \overline{q} \wedge s_{1} \wedge \overline{s_{0}}) \\ &=& (p \wedge \overline{q} \wedge \overline{s_{0}}) \vee (\overline{p} \wedge q \wedge \overline{s_{1}} \wedge s_{0}) \\ \rightarrow &=& (p \wedge \overline{q} \wedge \overline{s_{1}} \wedge \overline{s_{0}} \wedge p' \wedge \overline{q'} \wedge \overline{s'_{1}} \wedge \overline{s'_{0}}) \\ \vee & (p \wedge \overline{q} \wedge \overline{s_{1}} \wedge \overline{s_{0}} \wedge p' \wedge \overline{q'} \wedge \overline{s'_{1}} \wedge \overline{s'_{0}}) \\ \vee & (\overline{p} \wedge q \wedge \overline{s_{1}} \wedge s_{0} \wedge p' \wedge \overline{q'} \wedge s'_{1} \wedge \overline{s'_{0}}) \\ \vee & (p \wedge \overline{q} \wedge s_{1} \wedge \overline{s_{0}} \wedge p' \wedge \overline{q'} \wedge s'_{1} \wedge \overline{s'_{0}}) \end{array}$$

BDDs

- A BDD is a DAG built from if-x-then-?-else-?, true and false.
- A good example of compact representation is odd parity

 $x_0 \oplus x_1 \oplus x_2 \oplus x_3$ is represented as (\oplus is eXclusive OR.)

- : true branch
- --- : false branch

Reachability:

- Given a set of initial states $S^0 \subseteq \{T, F\}^n$.
- Given a transition relation $\rightarrow \subseteq \{T, F\}^n \times \{T, F\}^n$.
- Compute the set

$$\{s \in \{T, F\}^n \mid \exists \vec{s} : s_0 \in S^0, s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n = s\}$$

- A simple reachability algorithm is
 reachable()
 visited := Ø
 next := S⁰
 while next ≠ visited do
 visited := next;
 next := {s ∈ {T, F}ⁿ | ∃s' ∈ next : s' → s}
 next := next ∪ visited
 return visited
- The assignment

$$\mathsf{next} := \{ s \in \{ T, F \}^n \mid \exists s' \in \mathsf{next} : s' \to s \}$$

can be implemented with BDD operations:

$$\mathsf{next}(\vec{x}) := \left(\exists \vec{x}.\mathsf{next}(\vec{x}) \land T(\vec{x},\vec{x'})\right) [\vec{x'} := \vec{x}]$$

• Given a set of bad states $Bad(\vec{x})$, we can verify

 $A \Box \neg bad$

by checking if

$$\mathsf{reachable}() \land \mathit{Bad}(\vec{x}) = \mathsf{F}$$

(Remember that $F \equiv \emptyset$)

- However, the chance of a BDD using lots of memory is non-negligible.
- So how can we answer the question

$$\exists n: \exists s_i (i = 0 \cdots n): s_0 \in S^0 \land s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n \in Bad$$

in a more efficient way?

Bounded Model Checking

Answers the question

$$\exists s_i (i = 0 \cdots n) : s_0 \in S^0 \land s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n \in Bad$$

- This is not a complete answer.
- It is a good way of finding bugs.
- Can also answer the question:

$$\exists s_i (i = 0 \cdots n) : \exists t_j (j = 1 \cdots k) : \\ s_0 \in S^0 \land \\ s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n \in Accept \land \\ s_n = t_1 \rightarrow t_2 \rightarrow \cdots \rightarrow t_n \rightarrow t_1$$

To extend form safety formula's to arbitrary LTL formula's

To answer the question

$$\exists s_i (i = 0 \cdots n) : s_0 \in S^0 \land s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n \in Bad$$

Build the formula

$$\phi = S^0(\vec{x_0}) \land T(\vec{x_0}, \vec{x_1}) \land \dots \land T(\vec{x_{n-1}}, \vec{x_n}) \land \mathsf{Bad}(\vec{x_n})$$

 $\bullet\,$ Find a CNF formula ψ such that

 $SAT(\phi)$ iff $SAT(\psi)$

- Use a SAT-solver to test if ψ is satisfiable.
 - $\bullet~$ If ψ is satisfiable then the assignment is a path to a bad state.
 - If ψ is not satisfiable then no such path of length n exists.

To find a CNF ψ for any given formula ϕ , such that SAT(ϕ) iff SAT(ψ)

First, apply Common Subexpression Elimination to obtain

$$\phi(x_1,\cdots,x_n) = \operatorname{let} x_{n+1} = \phi_{n+1},\cdots,x_{n+m} = \phi_{n+m} \operatorname{in} x_{n+m}$$

such that

$$\phi_i = \neg x_j \text{ or } \phi_i = x_j \triangle x_k \text{ where } j, k < i \text{ and } \triangle \in \{ \land, \lor, \leftrightarrow \}$$

then we have

$$SAT(\phi)$$
 iff $SAT(x_{n+1} \leftrightarrow \phi_{n+1} \land \cdots \land x_{n+m} \leftrightarrow \phi_{n+m} \land x_{n+m})$

Second, replace $x_i \leftrightarrow \phi_i$ according to the table

$$x \leftrightarrow \neg y \stackrel{\text{sat}}{\Leftrightarrow} (x \lor y) \land (\neg x \lor \neg y)$$
$$x \leftrightarrow (y \lor z) \stackrel{\text{sat}}{\Leftrightarrow} (x \lor \neg y) \land (x \lor \neg z) \land (\neg x \lor y \lor z)$$
$$x \leftrightarrow (y \land z) \stackrel{\text{sat}}{\Leftrightarrow} (x \lor \neg y \lor \neg z) \land (\neg x \lor y) \land (\neg x \lor z)$$
$$x \leftrightarrow (y \leftrightarrow z) \stackrel{\text{sat}}{\Leftrightarrow} (x \lor \neg y \lor \neg z) \land (x \lor y \lor z) \land$$
$$(\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z)$$

÷

- When sets are represented as BDDs, we can check for equality of sets. Translating formulas to BDDs can cause exponential blow-up
- When sets are represented as arbitrary formulas, we can check for emptiness using Tseitin/SAT. SAT is NP-complete
- A tool that uses both BDDs and SAT is NuSMV (http://nusmv.irst.itc.it/)

