Model Checking

@ Symbolic: Manipulate sets of states.

o Represent a state as a record of booleans.

o Represent a set of states as a boolean formula (BDD/CNF).
o Typically large sets can be represented with small formula's.
o Worst case for N states with K variables is O(N - K).

o Explicit: Manipulate single states.

o Represent a state as a term (tree).
Represent a set of states as a container over terms (trees).
Worst case for N states with K variables is O(N - K).
Best case is O(N) is possible.

Gputational
Tgic
Stefan Blom Verification using Model Checking



Representing sets of states

If the variables used are X then
o A set of states S C {T,F}" is a formula ¢s(X), such that

(b17 Tt bn) e S iff ¢5(B)
@ A binary relation R C {T,F}" x {T,F}" on states is a
formula ¢g(X,x’), such that

(by,--- ,bp) R (b, -, b.) iff pr(b, D)

@ Operation on sets translate to operations on formulas:

ulVv

n|A

¢ - Gputational
T gl

Stefan Blom Verification using Model Checking



'cog
_QCU)
@
U??m
N
wn
(e}
T Y
M4 TE

S1
S2
SO = pAGASIAT
S = (PAGASTAR)VBAGASTAS)V(PATASIAT)

(PAGAS)V(PAGASAS))
— = (PAGASIASSAP NG /\sl/\so)
(p/\q/\sl/\so/\p/\q Ns) A sp)
)
)

< <

(PAgASTASSA P /\i/\s1
(PAGAsSIASSAP NG Asp A

<

7/
%0
S/
0

Gputational
Tgic
Stefan Blom Verification using Model Checking



@ A BDD is a DAG built from if-x-then-?-else-?, true and false.

@ A good example of compact representation is odd parity

X0 P x1 B xo P x3 is represented as
(& is eXclusive OR.)

——— : true branch
— — — : false branch

Gl
&)
&s)

Gputational
Tgic
Stefan Blom Verification using Model Checking



Application of BDD.

Reachability:
o Given a set of initial states S° C {T, F}".
@ Given a transition relation —C {T,F}" x {T,F}".

o Compute the set

{se{T,F}"]EI?:SOGSO,SO—>51—>---—>s,,:s}

Gputational
Tgic
Stefan Blom Verification using Model Checking



Reachability Algorithm

@ A simple reachability algorithm is

reachable()
visited := ()
next := S°

while next # visited do
visited := next ;
next := {s e {T,F}"|3s’ e next : s’ — s}
next := next U visited
return visited

@ The assignment
next .= {s e {T,F}"|3s’ enext:s — s}
can be implemented with BDD operations:

next(X) := (EI)_(’.next(?) A T()?,)Z’)) [X = X] G
;glC

Stefan Blom Verification using Model Checking



Reachability Applied

@ Given a set of bad states Bad(X), we can verify
AC=bad
by checking if
reachable() A Bad(X) = F

(Remember that F = ()

@ However, the chance of a BDD using lots of memory is
non-negligible.

@ So how can we answer the question
3n: 3s;(i=0---n): s5€S°Asy— 5 — - — s, e Bad

in a more efficient way? Grpueatona
;glC

Stefan Blom Verification using Model Checking



Bounded Model Checking

@ Answers the question

Isi(i=0---n): s90€S°Asy— s — - — s, Bad

@ This is not a complete answer.
o It is a good way of finding bugs.

@ Can also answer the question:

si(i=0---n): It;(j =1---k):
so € SOA
Sp — S1 — -+ — Sp € AcceptA

Sh=t1—>tb—--—th—h

To extend form safety formula’s to arbitrary LTL formula’s

Gputational
Tgic
Stefan Blom Verification using Model Checking



Bounded Model Checking - algorithm

To answer the question
3s;(i=0---n): speS®Asy— s —---— s, € Bad
@ Build the formula
¢ =S°00) A T(x0, X)) A - A T(xa"1,%p) A Bad(xp,)
@ Find a CNF formula v such that

SAT(¢) iff SAT(v))

@ Use a SAT-solver to test if 1) is satisfiable.

e If ¢ is satisfiable then the assignment is a path to a bad state.
e If ¢ is not satisfiable then no such path of length n exists.

Gputational
Tgic
Stefan Blom Verification using Model Checking



Tseitin Transformation

To find a CNF ) for any given formula ¢, such that
SAT(¢) iff SAT(v))

First, apply Common Subexpression Elimination to obtain

d(x1, -+ s Xn) =let Xpp1 = Gpy1s o s Xnkm = Pnm 1D Xnpm
such that

¢i = —xj or ¢; = xjAx where j,k <iand A e {A,V, =}

then we have

SAT(¢) iff SAT(Xxp41 < Pnt1 A+ A Xntm < Ontm A Xntm)

C_Iz:l}zutational



Tseitin Transformation

Second, replace x; < ¢; according to the table

(0}
)
~+

X<—>—|

@

(xVy) A (=xVy)
(xVay)A(xV-z)A(-xVyVz)
(xV=ayV-z)A(—xVy)A(-xVz)
(xVayV-z)A(xVyVz)A
(~xV-yVz)A(—xVyV-z)

S,

9]
~+

x < (yVaz)

¥

0
5}
~

ik

x o (y A2)

»
5]
~

0

X (y < 2)

Gputational
Tgic
Stefan Blom Verification using Model Checking



@ When sets are represented as BDDs,
we can check for equality of sets.
Translating formulas to BDDs can cause exponential blow-up

@ When sets are represented as arbitrary formulas,
we can check for emptiness using Tseitin/SAT.
SAT is NP-complete

@ A tool that uses both BDDs and SAT is NuSMV
(http://nusmv.irst.itc.it/)

Gputational
Tgic
Stefan Blom Verification using Model Checking


http://nusmv.irst.itc.it/

