
Model Checking

Symbolic: Manipulate sets of states.

Represent a state as a record of booleans.
Represent a set of states as a boolean formula (BDD/CNF).
Typically large sets can be represented with small formula’s.
Worst case for N states with K variables is O(N · K).

Explicit: Manipulate single states.

Represent a state as a term (tree).
Represent a set of states as a container over terms (trees).
Worst case for N states with K variables is O(N · K).
Best case is O(N) is possible.

Stefan Blom Verification using Model Checking

Representing sets of states

If the variables used are ~x then

A set of states S ⊆ {T ,F}n is a formula φS(~x), such that

(b1, · · · , bn) ∈ S iff φS(~b)

A binary relation R ⊆ {T ,F}n × {T ,F}n on states is a
formula φR(~x , ~x ′), such that

(b1, · · · , bn) R (b′1, · · · , b′n) iff φR(~b, ~b′)

Operation on sets translate to operations on formulas:

∪ ∨
∩ ∧
c ¬

Stefan Blom Verification using Model Checking

Example

S2

p

S1

q

S0

p

s1 s0
S0 F F
S1 F T
S2 T F

S0 = p ∧ q ∧ s1 ∧ s0
S = (p ∧ q ∧ s1 ∧ s0) ∨ (p ∧ q ∧ s1 ∧ s0) ∨ (p ∧ q ∧ s1 ∧ s0)

= (p ∧ q ∧ s0) ∨ (p ∧ q ∧ s1 ∧ s0)

→ = (p ∧ q ∧ s1 ∧ s0 ∧ p′ ∧ q′ ∧ s ′1 ∧ s ′0)

∨ (p ∧ q ∧ s1 ∧ s0 ∧ p′ ∧ q′ ∧ s ′1 ∧ s ′0)

∨ (p ∧ q ∧ s1 ∧ s0 ∧ p′ ∧ q′ ∧ s ′1 ∧ s ′0)

∨ (p ∧ q ∧ s1 ∧ s0 ∧ p′ ∧ q′ ∧ s ′1 ∧ s ′0)

Stefan Blom Verification using Model Checking

BDDs

A BDD is a DAG built from if-x-then-?-else-?, true and false.

A good example of compact representation is odd parity

x0 ⊕ x1 ⊕ x2 ⊕ x3 is represented as
(⊕ is eXclusive OR.)

: true branch
___ : false branch

76540123x0

��
��

��
>

>
>

76540123x1

�
�

OOOOOOOOOO 76540123x1

oooooooooo
�
�

76540123x2

�
�

OOOOOOOOOO 76540123x2

oooooooooo
�
�

76540123x3

�
�

MMMMMMMMMM 76540123x3

qqqqqqqqqq
�
�

T F

Stefan Blom Verification using Model Checking

Application of BDD.

Reachability:

Given a set of initial states S0 ⊆ {T ,F}n.

Given a transition relation →⊆ {T ,F}n × {T ,F}n.

Compute the set

{s ∈ {T ,F}n | ∃~s : s0 ∈ S0, s0 → s1 → · · · → sn = s}

Stefan Blom Verification using Model Checking

Reachability Algorithm

A simple reachability algorithm is

reachable()
visited := ∅
next := S0

while next 6= visited do
visited := next ;
next := {s ∈ {T ,F}n | ∃s ′ ∈ next : s ′ → s}
next := next ∪ visited

return visited

The assignment

next := {s ∈ {T ,F}n | ∃s ′ ∈ next : s ′ → s}

can be implemented with BDD operations:

next(~x) :=
(
∃~x .next(~x) ∧ T (~x , ~x ′)

)
[~x ′ := ~x]

Stefan Blom Verification using Model Checking

Reachability Applied

Given a set of bad states Bad(~x), we can verify

A�¬bad

by checking if

reachable() ∧ Bad(~x) = F

(Remember that F ≡ ∅)
However, the chance of a BDD using lots of memory is
non-negligible.

So how can we answer the question

∃n : ∃si (i = 0 · · · n) : s0 ∈ S0 ∧ s0 → s1 → · · · → sn ∈ Bad

in a more efficient way?

Stefan Blom Verification using Model Checking

Bounded Model Checking

Answers the question

∃si (i = 0 · · · n) : s0 ∈ S0 ∧ s0 → s1 → · · · → sn ∈ Bad

This is not a complete answer.

It is a good way of finding bugs.

Can also answer the question:

∃si (i = 0 · · · n) : ∃tj(j = 1 · · · k) :
s0 ∈ S0∧
s0 → s1 → · · · → sn ∈ Accept∧
sn = t1 → t2 → · · · → tn → t1

To extend form safety formula’s to arbitrary LTL formula’s

Stefan Blom Verification using Model Checking

Bounded Model Checking - algorithm

To answer the question

∃si (i = 0 · · · n) : s0 ∈ S0 ∧ s0 → s1 → · · · → sn ∈ Bad

Build the formula

φ = S0(~x0) ∧ T (~x0, ~x1) ∧ · · · ∧ T (~xn−1, ~xn) ∧ Bad(~xn)

Find a CNF formula ψ such that

SAT(φ) iff SAT(ψ)

Use a SAT-solver to test if ψ is satisfiable.

If ψ is satisfiable then the assignment is a path to a bad state.
If ψ is not satisfiable then no such path of length n exists.

Stefan Blom Verification using Model Checking

Tseitin Transformation

To find a CNF ψ for any given formula φ, such that

SAT(φ) iff SAT(ψ)

First, apply Common Subexpression Elimination to obtain

φ(x1, · · · , xn) = let xn+1 = φn+1, · · · , xn+m = φn+m in xn+m

such that

φi = ¬xj or φi = xj4xk where j , k < i and 4 ∈ {∧,∨,↔}

then we have

SAT(φ) iff SAT(xn+1 ↔ φn+1 ∧ · · · ∧ xn+m ↔ φn+m ∧ xn+m)

Stefan Blom Verification using Model Checking

Tseitin Transformation

Second, replace xi ↔ φi according to the table

x ↔ ¬y
sat⇔ (x ∨ y) ∧ (¬x ∨ ¬y)

x ↔ (y ∨ z)
sat⇔ (x ∨ ¬y) ∧ (x ∨ ¬z) ∧ (¬x ∨ y ∨ z)

x ↔ (y ∧ z)
sat⇔ (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y) ∧ (¬x ∨ z)

x ↔ (y ↔ z)
sat⇔ (x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ z) ∧

(¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z)
...

Stefan Blom Verification using Model Checking

Summary

When sets are represented as BDDs,
we can check for equality of sets.
Translating formulas to BDDs can cause exponential blow-up

When sets are represented as arbitrary formulas,
we can check for emptiness using Tseitin/SAT.
SAT is NP-complete

A tool that uses both BDDs and SAT is NuSMV
(http://nusmv.irst.itc.it/)

Stefan Blom Verification using Model Checking

http://nusmv.irst.itc.it/

