Model Checking

@ Symbolic: Manipulate sets of states.

o Represent a state as a record of booleans.

o Represent a set of states as a boolean formula (BDD/CNF).
o Typically large sets can be represented with small formula's.
o Worst case for N states with K variables is O(N - K).

o Explicit: Manipulate single states.

o Represent a state as a term (tree).
Represent a set of states as a container over terms (trees).
Worst case for N states with K variables is O(N - K).
Best case is O(N) is possible.
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Representing sets of states

If the variables used are X then
o A set of states S C {T,F}" is a formula ¢s(X), such that

(b17 Tt bn) e S iff ¢5(B)
@ A binary relation R C {T,F}" x {T,F}" on states is a
formula ¢g(X,x’), such that

(by,--- ,bp) R (b, -, b.) iff pr(b, D)

@ Operation on sets translate to operations on formulas:
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@ A BDD is a DAG built from if-x-then-?-else-?, true and false.

@ A good example of compact representation is odd parity

X0 P x1 B xo P x3 is represented as
(& is eXclusive OR.)

——— : true branch
— — — : false branch
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Application of BDD.

Reachability:
o Given a set of initial states S° C {T, F}".
@ Given a transition relation —C {T,F}" x {T,F}".

o Compute the set

{se{T,F}"]EI?:SOGSO,SO—>51—>---—>s,,:s}
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Reachability Algorithm

@ A simple reachability algorithm is

reachable()
visited := ()
next := S°

while next # visited do
visited := next ;
next := {s e {T,F}"|3s’ e next : s’ — s}
next := next U visited
return visited

@ The assignment
next .= {s e {T,F}"|3s’ enext:s — s}
can be implemented with BDD operations:

next(X) := (EI)_(’.next(?) A T()?,)Z’)) [X = X] G
;glC
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Reachability Applied

@ Given a set of bad states Bad(X), we can verify
AC=bad
by checking if
reachable() A Bad(X) = F

(Remember that F = ()

@ However, the chance of a BDD using lots of memory is
non-negligible.

@ So how can we answer the question
3n: 3s;(i=0---n): s5€S°Asy— 5 — - — s, e Bad

in a more efficient way? Grpueatona
;glC
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Bounded Model Checking

@ Answers the question

Isi(i=0---n): s90€S°Asy— s — - — s, Bad

@ This is not a complete answer.
o It is a good way of finding bugs.

@ Can also answer the question:

si(i=0---n): It;(j =1---k):
so € SOA
Sp — S1 — -+ — Sp € AcceptA

Sh=t1—>tb—--—th—h

To extend form safety formula’s to arbitrary LTL formula’s
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Bounded Model Checking - algorithm

To answer the question
3s;(i=0---n): speS®Asy— s —---— s, € Bad
@ Build the formula
¢ =S°00) A T(x0, X)) A - A T(xa"1,%p) A Bad(xp,)
@ Find a CNF formula v such that

SAT(¢) iff SAT(v))

@ Use a SAT-solver to test if 1) is satisfiable.

e If ¢ is satisfiable then the assignment is a path to a bad state.
e If ¢ is not satisfiable then no such path of length n exists.
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Tseitin Transformation

To find a CNF ) for any given formula ¢, such that
SAT(¢) iff SAT(v))

First, apply Common Subexpression Elimination to obtain

d(x1, -+ s Xn) =let Xpp1 = Gpy1s o s Xnkm = Pnm 1D Xnpm
such that

¢i = —xj or ¢; = xjAx where j,k <iand A e {A,V, =}

then we have

SAT(¢) iff SAT(Xxp41 < Pnt1 A+ A Xntm < Ontm A Xntm)
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Tseitin Transformation

Second, replace x; < ¢; according to the table
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@ When sets are represented as BDDs,
we can check for equality of sets.
Translating formulas to BDDs can cause exponential blow-up

@ When sets are represented as arbitrary formulas,
we can check for emptiness using Tseitin/SAT.
SAT is NP-complete

@ A tool that uses both BDDs and SAT is NuSMV
(http://nusmv.irst.itc.it/)
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