
Restricted LTL

Consider the LTL subset

φ ::= p | φ ∧ φ | ¬φ | Xφ | φ U φ

The subformulas of a formula are:

SF(φ) = {φ} ∪


SF(φ1) ,φ = ¬φ1

SF(φ1) ∪ SF(φ2),φ = φ1 ∧ φ2

SF(φ1) ,φ = Xφ1

SF(φ1) ∪ SF(φ2),φ = φ1 U φ2

The subformulas closed under negation and modulo double
negation are

SF¬(φ) = {φ,¬φ | φ ∈ SF (φ), φ 6= ¬φ′}

Stefan Blom Verification using Model Checking

Construction

Given the LTL formula φ, define the Alternating Büchi Automaton

Aφ = (S , s0, ρ,F)

over the alphabet 2Prop with

S = SF¬(φ)

s0 = φ

F = {ψ ∈ S | ψ = ¬(ψ1 U ψ2)}
ρ(p, a) = true, if p ∈ a
ρ(p, a) = false, if p 6∈ a
ρ(ψ1 ∧ ψ2, a) = ρ(ψ1, a) ∧ ρ(ψ2, a)

ρ(¬ψ, a) = ρ(ψ, a) where


ψ = ¬ψ, if ψ ∈ S
true = false

false = true

α ∨ β = α ∧ β
α ∧ β = α ∨ β

ρ(Xψ, a) = ψ
ρ(ψ1 U ψ2, a) = (ρ(ψ1, a) ∧ ψ1 U ψ2) ∨ ρ(ψ2, a)

Stefan Blom Verification using Model Checking

Nested Depth First Search (1/4)

Input: rooted graph with accepting states
Output: existence of accepting cycle

var V1, V2 : set;
main(){

V1 := ∅;
V2 := ∅;
DFS(root);
exit absent;

}

Stefan Blom Verification using Model Checking

Nested Depth First Search (2/4)

The first DFS looks for accepting states:

DFS(s){
if s ∈ V1 return;
V1 := V1 ∪ {s};
for s ′ in succ(s){

DFS(s ′)
}
if accepting(s) NDFS(s,s);

}

Stefan Blom Verification using Model Checking

Nested Depth First Search (3/4)

The second DFS looks for accepting cycles:

NDFS(s,a){
if s ∈ V2 return;
V2 := V2 ∪ {s};
for s ′ in succ(s){

if s ′ = a then exit present;
NDFS(s ′,a)

}
}

Stefan Blom Verification using Model Checking

Nested Depth First Search (4/4)

Note that the second DFS does not clear V2.

Time and memory complexity are linear in the number of
edges of the graph.

Works ’on-the-fly’:
if a cycle is present, it may be found without searching the
whole graph.

Note that a cycle is present on the stack when exiting
’present’.

Stefan Blom Verification using Model Checking

Stuttering

Intuitively means moving between states with the same
atomic propositions.

A run is a sequence of subsets of Prop:

S ′1 S ′2 S ′3 · · ·

Defining
S1 = S , Sn+1 = S Sn,

we can uniquely write any run π as

Sn1
1 Sn2

2 Sn3
3 · · ·

where Si 6= Si+1.

The stutter free variant of π, denoted E (π), is

S1 S2 S3 · · ·

Stefan Blom Verification using Model Checking

Stuttering Invariance

An LTL formula φ is stutter invariant if

π, 0 |= φ⇔ E (π), 0 |= φ

The fragment of LTL, without the next time operator X is
stutter invariant. This fragment is denoted LTL-X.

Stefan Blom Verification using Model Checking

Safety properties

Intuitively it is a property that says that bad things never
happen.

A safety property is a property that allows failure detection in
finitely many steps.

Given a property.

A bad prefix is a finite prefix of a computation for which the
property fails, such that any computation starting with the
same prefix also fails the property.
The property is a safety property is every failing computation
has a bad prefix.

The following class of LTL formula’s are safety formula’s

φs ::= p | ¬p | φs ∧ φs | φs ∨ φs | X φs | φs R φs

Stefan Blom Verification using Model Checking

Liveness properties

Intuitively it is a property that says that good things happen
infinitely often.

For LTL we can just say that a property is a liveness property
if it isn’t a safety property.

Stefan Blom Verification using Model Checking

Fairness

Intuitively it means that everybody gets their turn.

Let there be N processes 1 ≤ i ≤ N.

Weak fairness If from a certain point in the computation a
step is continuously enabled (pi) then it is executed infinitely
often (qi).∧

1≤i≤N

(♦�pi → �♦qi) ∼
∧

1≤i≤N

�♦(¬pi ∨ qi)

Strong fairness If a step is infinitely often enabled then it is
infinitely often executed.∧

1≤i≤N

(�♦pi → �♦qi)

Stefan Blom Verification using Model Checking

Model Checking and Fairness

To check whether a property holds for fair computations, we
can obviously check the formula

fairness → property

Unfortunately, many tools will experience an exponential
blow-up in the number of processes.

If you are lucky, the tool will have support for fairness

Otherwise, you will have to do the work yourself.

Stefan Blom Verification using Model Checking

Fairness for continuously enabled processes.

Let process be a variable containing the process that made the last
step.
Given a Büchi Automaton and K processes, make K + 2 copies
(0, · · · ,K + 1) of the Büchi automaton.

Remove the acceptance conditions from all copies, except
copy 0.

In copy 0, redirect edges starting in accepting states to copy 1.

In copy i (1 ≤ i ≤ K) duplicate the edges to the next copy
with the extra condition process = i and add the condition
process 6= i to every old edge.

In copy k + 1, redirect all edges to copy 0.

Stefan Blom Verification using Model Checking

Fairness for processes, which once enabled, remain enabled
until taken.

Given a Büchi Automaton and K processes, make K + 2 copies
(0, · · · ,K + 1). of the Büchi automaton.

Remove the acceptance conditions from all copies, except
copy 0.

In copy 0, redirect edges starting in accepting states to copy 1.

In copy i (1 ≤ i ≤ K) duplicate the edges to the next copy
with the extra condition [process = i or process i not enabled]
and add the condition [process 6= i and process i enabled] to
every old edge.

In copy k + 1, redirect all edges to copy 0.

Stefan Blom Verification using Model Checking

