Restricted LTL

@ Consider the LTL subset

pi=ploNd| 0| Xp[oUg

@ The subformulas of a formula are:

SF(¢1) =1
RCRICEL I R

SF(¢1) USF(h2),6 = ¢1 U ¢

@ The subformulas closed under negation and modulo double
negation are

SF_‘((rb) = {(rb? _‘¢ ‘ ¢ € SF((b)? (b # ﬁ(bl} @gumtional

Given the LTL formula ¢, define the Alternating Biichi Automaton

A¢ = (Sasoapv F)
over the alphabet 2F7°P with
e S=SF"(¢)
0 s0=¢
F= S|vY=-(y1 U
° eS|y (?/fl P2)} D = e
e p(p,a) = true, if pe a frie — false

p(p; a) = false, if p & a

P(wl/\l/fz, a) = p(v¥1,a) A p(1)2, a) aAD

PEﬁ a) =p(¥,a) where aAB=avp
(¥

p(X ¥, a) 0
p 1U1/12, a) = (p(¥1,a) Ab1 U aha) V p(i2, a)

false = true

Q
<

@
I

Gputational
Tgic
Stefan Blom Verification using Model Checking

Nested Depth First Search (1/4)

Input: rooted graph with accepting states
Output: existence of accepting cycle

var Vi, Vo @ set;

main(){
Vii=10;
Vo =0
DFS(root);
exit absent;
}

Gputational
Tgic
Stefan Blom Verification using Model Checking

Nested Depth First Search (2/4)

The first DFS looks for accepting states:

DFS(s){
if s € Vq return;
Vi =Viu{s}
for s” in succ(s){

DFS(s")
}

if accepting(s) NDFS(s,s);

Gputational
Tgic
Stefan Blom Verification using Model Checking

Nested Depth First Search (3/4)

The second DFS looks for accepting cycles:

NDFS(s,a){
if s ¢ V) return;
Vo = Vo U{s};
for s” in succ(s){

if s = a then exit present;
NDFS(s’,a)

Gputational
Tgic
Stefan Blom Verification using Model Checking

Nested Depth First Search (4/4)

@ Note that the second DFS does not clear V5.

@ Time and memory complexity are linear in the number of
edges of the graph.

@ Works 'on-the-fly":
if a cycle is present, it may be found without searching the
whole graph.

@ Note that a cycle is present on the stack when exiting
'present’.

Gputational
Tgic
Stefan Blom Verification using Model Checking

Stuttering

@ Intuitively means moving between states with the same
atomic propositions.

@ A run is a sequence of subsets of Prop:
5{ Sé Sé -

@ Defining
st=5 sl=-5s"

we can uniquely write any run 7 as
n ch chs
SIS S

where S; #£ Sj41.

@ The stutter free variant of 7, denoted E(7), is
51 52 53 LI @gumtional

Stuttering Invariance

@ An LTL formula ¢ is stutter invariant if

0 ¢ E(r),0 ¢

@ The fragment of LTL, without the next time operator X is
stutter invariant. This fragment is denoted LTL-X.

Gputational
Tgic
Stefan Blom Verification using Model Checking

Safety properties

@ Intuitively it is a property that says that bad things never
happen.
@ A safety property is a property that allows failure detection in
finitely many steps.
@ Given a property.
e A bad prefix is a finite prefix of a computation for which the
property fails, such that any computation starting with the
same prefix also fails the property.

e The property is a safety property is every failing computation
has a bad prefix.

@ The following class of LTL formula’s are safety formula's
Gs =P P Ps Ns | G5V bs | X bs | ds R ¢s

Gputational
Tgic
Stefan Blom Verification using Model Checking

Liveness properties

@ Intuitively it is a property that says that good things happen
infinitely often.

@ For LTL we can just say that a property is a liveness property
if it isn't a safety property.

Gputational
Tgic
Stefan Blom Verification using Model Checking

Fairness

@ Intuitively it means that everybody gets their turn.
@ Let there be N processes 1 < i < N.

o Weak fairness If from a certain point in the computation a
step is continuously enabled (p;) then it is executed infinitely
often (qj).

A (©0p —D00g) ~ N\ B0(-pi v a)

1<i<N 1<i<N

e Strong fairness If a step is infinitely often enabled then it is
infinitely often executed.

A (@0p; — 00q)

1<i<N

Gputational
Tgic
Stefan Blom Verification using Model Checking

Model Checking and Fairness

@ To check whether a property holds for fair computations, we
can obviously check the formula

fairness — property

@ Unfortunately, many tools will experience an exponential
blow-up in the number of processes.

o If you are lucky, the tool will have support for fairness
@ Otherwise, you will have to do the work yourself.

Gputational
Tgic
Stefan Blom Verification using Model Checking

Fairness for continuously enabled processes.

Let process be a variable containing the process that made the last
step.

Given a Biichi Automaton and K processes, make K + 2 copies
(0,---, K+ 1) of the Biichi automaton.

@ Remove the acceptance conditions from all copies, except
copy O.

@ In copy 0, redirect edges starting in accepting states to copy 1.

@ In copy i (1 <i < K) duplicate the edges to the next copy
with the extra condition process = i and add the condition
process # i to every old edge.

@ In copy k + 1, redirect all edges to copy 0.

Gputational
Tgic
Stefan Blom Verification using Model Checking

Fairness for processes, which once enabled, remain enabled

until taken.

Given a Biichi Automaton and K processes, make K + 2 copies
(0,---,K +1). of the Biichi automaton.

@ Remove the acceptance conditions from all copies, except
copy O.
@ In copy 0, redirect edges starting in accepting states to copy 1.

@ In copy i (1 </ < K) duplicate the edges to the next copy
with the extra condition [process = i or process i not enabled]
and add the condition [process # i and process i enabled] to
every old edge.

@ In copy k + 1, redirect all edges to copy 0.

Gputational
Tgic
Stefan Blom Verification using Model Checking

