Language Reference

This section describes the languages used when defining UPPAAL system models, and requirement
specifications.

The System Description section describes the language used when defining a system model.

The Requirements Specification section describes the language used when specifying requirements on
the system model.

The Expressions section describes the syntax for expressions in the two languages.

System Description

A system model in UPPAAL consists of a network of processes described as extended timed automata.
The description of a model consist of three parts: its global and local declarations, the automata
templates, and the system definition.

Declarations

Declarations are either global or local (to a template) and can contain declarations of clocks, bounded
integers, channels (although local channels are useless), arrays, records, and types. The syntax is
described by the grammar for Declarations:

Declarations ::= (VariableDecl | TypeDecl | Function | ChanPriority)*
VariableDecl = Type VariableID (',' VariableID)* ';'
VariableID ::= ID ArravyDecl* [ '=' Initialiser ]
Initialiser ::= Expression
| '{'" Initialiser (',' Initialiser)* '}’
TypeDecls ::= 'typedef' Type ID ArrayDecl* (',' ID ArrayDecl*)* ';'

The global declarations may also contain at most one channel priority declaration.

Examples

« const int a = 1;
constant a with value 1 of type integer.
e bool b[8], cl[4];
two boolean arrays b and c, with 8 and 4 elements respectively.
« int[0,100] a=5;
an integer variable with the range [0, 100] initialised to 5.
« int afl2](3]1 ={ {1, 2, 3}, { 4, 5, 6} };
a multidimensional integer array with default range and an initialiser.
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« clock x, vy;
two clocks x and y.
- chan d;
a channel.
« urgent chan e;

an urgent channel.
e struct { int a; bool b; } sl = { 2, true };

an instantiation of the structure from above where the members a and b are set to 2 and true.
- meta int swap;

int aj;

int b;

assign swap = a; a = b; b = swap;

a meta variable is used to swap the contents of two integers.

Type Declarations

The typedef keyword is used to name types.

Example

The following declares a record type S containing an integer a, a boolean b and a clock c:

typedef struct
{

int aj;

bool b;

clock c;
}S;

Types

There are 4 predefined types: int, bool, clock, and chan. Array and record types can be defined
over these and other types.

Type ::= Prefix Typeld
Prefix ::= 'urgent' | 'broadcast' | 'meta' | 'const'
Typeld ::= ID | '"int' | 'clock' | 'chan' | 'bool'

| 'int' '[' Expression ',' Expression ']'

| 'scalar' '[' Expression ']'

| 'struct' '"{' FieldDecl (FieldDecl)* '}'
FieldDecl ::= Type ID ArrayDecl* (',' ID ArrayDecl*)* ';'
ArrayDecl ::= '"['" Expression ']'

I '"['" Type ']’

The default range of an integer is [-32768, 32767]. Any assignment out of range will cause the
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verification to abort.

Variables of type bool can have the values false and true, which are equivalent to the the integer
values 0 and 1. Like in C, any non-zero integer value evalutes to true and O evaluates to false.

Channels can be declared as urgent and/or broadcast channels. See the section on synchronisations for
information on urgent and broadcast channels.

Constants

Integers, booleans, and arrays and records over integers and booleans can be marked constant by
prefixing the type with the keyword const.

Meta variables

Integers, booleans, and arrays and records over integers and booleans can be marked as meta variables
by prefixing the type with the keyword meta.

Meta variables are stored in the state vector, but are sematically not considered part of the state. L.e.
two states that only differ in meta variables are considered to be equal. Example:

const int NUM_EDGES = 42;
meta bool edgeVisited[NUM_EDGES];

The example uses meta variables to maintain information about the history of a path, without affecting
the state-space exploration. With the declaration above and a system with 42 edges, all with an update
assigning true to their corresponding entry in edgeVisited, the query below can be used to
determine if there is a path where all edges are visited (and find such a path, if trace generation is
enabled).

E<> forall (i : int[0,41]) edgeVisited[i]

Arrays

The size of an array is specified either as an integer or as a bounded integer type or scalar set type. In
the first case the array will be 0-indexed. In the latter case, the index will be of the given type. The
following declares a scalar set s_t of size 3 and an integer array a of size 3 indexed by the scalar:

typedef scalar([3] s_t;
int a[s_t];

Record Variables

Record types are specified by using the struct keyword, following the C notation. For example, the



record s below consist of the two fields a and b:

struct

{
int aj;
int b;
}os;

Scalars

Scalars in UPPAAL are integer like elements with a limitted number of operations: Assignment and
identity testing. Only scalars from the same scalar set can be compared.

The limitted number of operations means that scalars are unordered (or that all orders are equivalent in
the sense that the model cannot distinguish between any of the them). UPPAAL applies symmetry
reduction to any model using scalars. Symmetry reduction can lead to dramatic reductions of the state
space of the model. resulting in faster verification and less memory being used.

Notice that symmetry reduction is not applied if diagnostic trace generation is enabled or when A<>,

E[ ] or ——> properties are verified.

Scalar sets are treated as types. New scalar sets are constructed with the scalar[n] type constructor,
where n is an integer indicating the size of the scalar set. Scalars of different scalar sets are
incomparable. Use typedef to name a scalar set such that is can be used several times, e.g.

typedef scalar[3] mySet;
mySet s;
int a[mySet];

Here mySet is a scalar set of size 3, s is a variable whos value belongs to the scalar set mySet and a
is an array of integers indexed by the scalar set mySet. Thusa[s] = 2 isa valid expression.

Functions

Functions can be declared alongside other declarations. The syntax for functions is defined by the

grammar for Function:

Function = Type ID '(' Parameters ')' Block
Block = '{' Declarations Statement* '}'
Statement = Block

T.
4

Expression ';
ForLoop

|

|

|

| TIteration

| WhileLoop

| DoWhileLoop

| IfStatement

| ReturnStatement
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ForLoop = 'for' '(' Expression ';' Expression ';' Expression ')'
Statement

Iteration = '"for' '"(' ID ':' Type ')' Statement

WhileLoop = 'while' '(' Expression ')' Statement

DoWhile ::= 'do' Statement 'while' '(' Expression ')' ';'
IfStatment = 'if' '(' Expression ')' Statement [ 'else' Statement ]
ReturnStatement ::= 'return' [ Expression ] ';'

Iterators

The keyword for has two uses: One is a C/C++/Java like for-loop, and the other is a Java like iterator.
The latter is primarily used to iterate over arrays indexed by scalars.

A statement for (ID : Type) Statement will execute Statement once for each value ID of
the type Type. The scope of ID is the inner expression Expr, and Type must be a bounded integer or
a scalar set.

Examples

add

The following function returns the sum of two integers. The arguments are call by value.

int add(int a, int b)
{

return a + b;

}

swap

The following procedure swaps the values of two call-by-reference integer parameters.

void swap(int &a, int &b)
{

int ¢ = a;

a = by

b = ¢;

initialize
The following procedure initializes an array such that each element contains its index in the array.
Notice that the an array parameter is a call-by-value parameter unless an ampersand is used in the

declaration. This is different from C++ syntax, where the parameter could be considered an array of
references to integer.
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void initialize(int& a[1l0])
{
for (i : int[0,91])

Templates

UPPAAL provides a rich language for defining templates in the form of extended timed automata. In
contrast to classical timed automata, timed automata in UPPAAL can use a rich expression language to
test and update clock, variables, record types, call user defined functions, etc.

The automaton of a template consist of Locations and edges. A template may also have local

declarations and parameters. A template is instantiated by a process assignment (in the system

definition).

Locations

Locations of a timed automaton are graphically represented as circles. If a timed automaton is
considered as a directed graph, then locations represent the vertices of this graph. Locations are
connected by edges.

Names

Locations can have an optional name. Besides serving as an identifier allowing you to refer to the
location from the requirement specification language, named locations are useful when documenting
the model. The name must be a valid identifier and location names share the name space with variables,
types, templates, etc.

Invariants

Locations are labelled with invariants. Invariants are expressions and thus follow the abstract syntax of
expressions. However, the type checker restricts the set of possible expressions allowed in invariants.

An invariant must be a conjunction of simple conditions on clocks, differences between clocks, and
boolean expressions not involving clocks. The bound must be given by an integer expression.
Furthermore lower bounds on clocks are disallowed. It is important to understand that invariants
influence the behaviour of the system -- they are distinctly different from specifying safety properties
in the requirements specification language. States which violate the invariants are undefined; by
definition, such states do not exist. This influences the interpretation of urgent channels and broadcast
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channels. Please see the section on synchronisations for a detailed discussion of this topic.

Examples

The following are valid invariants. Here x and y are clocks and i is an integer array.

e X <= 2
x is less than or equal to 2.
e X <y
x is (strictly) less than y.
e (1i[O0]+1) !'= (i[1]1*10)

Initial locations

Each template must have exactly one initial location. The initial location is marked by a double circle.

Urgent locations

Urgent locations freeze time; i.e. time is not allowed to pass when a process is in an urgent location.
Semantically, urgent locations are equivalent to:

- adding an extra clock, x, that is reset on every incomming edge, and
+ adding an invariant x <= 0 to the location.

Committed locations

Like urgent locations, committed locations freeze time. Furthermore, if any process is in a committed
location, the next transition must involve an edge from one of the committed locations.

Committed locations are useful for creating atomic sequences and for encoding synchronization
between more than two components. Notice that if several processes are in a committed location at the
same time, then they will interleave.

Edges

Locations are connected by edges. Edges are annotated with selections, guards, synchronisations and
updates.

Selections
Selections non-deterministically bind a given identifier to a value in a given range. The other
three labels of an edge are within the scope of this binding.

Guards



An edge is enabled in a state if and only if the guard evaluates to true.

Synchronisation
Processes can synchronize over channels. Edges labelled with complementary actions over a
common channel synchronise.

Updates
When executed, the update expression of the edge is evaluated. The side effect of this expression
changes the state of the system.

Selections

SelectList ::= ID ':' Type
| SelectlList ',' ID ':' Type

For each ID in SelectList, bind ID non-deterministically to a value of type Type. The identifiers
are available as variables within the other labels of this edge (guard, synchronization, or update). The
supported types are bounded integers and scalar sets.

Note: The identifiers will shadow any variables with the same names.

Example

select: 1 : int[0,3]
synchronization: a[1]?

update expression: receive_a (1)

This edge will non-deterministically bind i to an integer in the range O to 3, inclusive. The value 1 is
then used both as an array index when deciding what channel to synchronize on, and as an argument in
the subsequent call to the function receive_a.

Guards

Guards follow the abstract syntax of expressions. However, the type checker restricts the set of
possible expressions allowed in guards: A guard must be a conjunction of simple conditions on clocks,
differences between clocks, and boolean expressions not involving clocks. The bound must be given by
an integer expression.

Examples

e x >=1 && X <= 2
x 1s in the interval [1,2].
« X <y
x 1s (strictly) less than vy.
e (41[0141) != (4[11*10)
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Value at position 0 in an integer array i plus one is not equal to value at position 1 times 10 (i
must be an integer array since we use arithmetic operations on its elements).

Synchronisations

Channels are used to synchronise processes. This is done by annotating edges in the model with
synchronisation labels. Synchronisation labels are syntactically very simple. They are of the form e?
or e !, where e is a side effect free expression evaluating to a channel.

The intuition is that two processes can synchronise on enabled edges annotated with complementary
synchronisation labels, i.e. two edges in different processes can synchronise if the guards of both edges
are satisfied, and they have synchronisation labels e1? and e2! respectively, where el and e2
evaluate to the same channel.

When two processes synchronise, both edges are fired at the same time, i.e. the current location of both
processes is changed. The update expression on an edge synchronizing on el1! is executed before the
update expression on an edge synchronizing on e2?. This is similar to the kind of synchronisation used
in CCS or to rendezvous synchronisation in SPIN.

Urgent channels are similar to regular channels, except that it is not possible to delay in the source state
if it 1s possible to trigger a synchronisation over an urgent channel. Notice that clock guards are not
allowed on edges synchronising over urgent channels.

Broadcast channels allow 1-to-many synchronisations. The intuition is that an edge with
synchronisation label e ! emits a broadcast on the channel e and that any enabled edge with
synchronisation label e ? will synchronise with the emitting process. /.e. an edge with an emit-
synchronisation on a broadcast channel can always fire (provided that the guard is satisfied), no matter
if any receiving edges are enabled. But those receiving edges, which are enabled will synchronise.
Notice that clock guards are not allowed on edges receiving on a broadcast channel. The update on the
emitting edge is executed first. The update on the receiving edges are executed left-to-right in the order
the processes are given in the system definition.

Notice that for both urgent and broadcast channels it is important to understand when an edge is
enabled. An edge is enabled if the guard is satisfied. Depending on the invariants, the target state
might be undefined. This does not change the fact that the edges are enabled! E.g. when two edges in
two different processes synchronise via a broadcast channel, and the invariant of the target location of
the receiving edge is violated, then this state is not defined. It is not the case that the emitting edge can
be fired by itself since the receiving edge is enabled and thus must synchronise. Please see the section
about the semantics for further details.

Updates

An update is a comma separated list of expressions. These expressions will typically have side effects.
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Assignments to clocks are limited to the regular = assignment operator and only integer expressions are
allowed on the right hand side of such assignments. The syntax of updates is defined by the grammar
for Update:

Update ::= [Expression (',' Expression)*]

Note: Assignments are evaluated sequentially (not concurrently). On synchronizing edges, the

assignments on the !-side (the emitting side) are evaluated before the ?-side (the receiving side).

The regular assignment operator, =, can be used for assigning values to integer, boolean, record and
clock variables. The other assignment operators are limitted to integer and boolean variables and work
asinC,e.g. 1 += 2isequivalenttoi = i + 2 except that any side effect of evaluating i is only
executed once in the first case whereas it is executed twice in the latter case.

Please remember that any integers are bounded. Any attempt to assign a value outside the declared
range to an integer, will cause an error and the verification will be aborted.

Examples

e x =20
clock (or integer variable) x is reset.

« J = (4if1]>i[2] 2 i[1] : i[2] )
integer j is assigned the maximum value of array elements 1 [ 1] and i [ 2 ]. This is equivalent
toj = i[1] >? 1i[2], exceptthat one of the sub-expressions is evaluated twice in the
example (once in the condition, and again in either the true case or the false case).

e x =1, y=2*x
integer variable x is set to 1 and y to 2 (as assignments are interpreted sequentially).

Parameters

Templates and functions are parameterised. The syntax for parameters is defined by the grammar for

Parameters:
Parameters ::= [ Parameter (',' Parameter)* ]
Parameter ::= Type [ '&' ] ID ArravyDecl*

In contrast to global and local declarations, the parameter list should not be terminated by a semicolon.

Call by Reference and Call by Value

Parameters can be declared to have either call-by-value or call-by-reference semantics. The syntax is
taken from C++, where the identifier of a call-by-reference parameter is prefixed with an ampersand in
the parameter declaration. Call-by-value parameters are not prefixed with an ampersand.

Clocks and channels must always be reference parameters.
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Note: Array parameters must be prefixed with an ampersand to be passed by reference, this does not
follow the C semantics.

Examples

« P(clock &x, bool bit)

process template P has two parameters: the clock x and the boolean variable bit.
e QO(clock &x, clock &y, int il, int &i2, chan &a, chan &b)

process template Q has six parameters: two clocks, two integer variables (with default range),
and two channels. All parameters except 11 are reference parameters.

System Definition

In the system definition, a system model is defined. Such a model consists of one or more concurrent
processes, local and global variables, and channels.

Global variables, channels and functions can be defined in the system definition using the grammar for
declarations. Such declarations have a global scope. However, they are not directly accessible by any
template, as they are declared after the templates. They are most useful when giving actual arguments
to the formal parameters of templates. The declarations in the system definition and in the top-level
declarations section are part of the system model.

The processes of the system model are defined in the form of a system declaration line, using the
grammer for System given below. The system line contains a list of templates to be instantiated into
processes. Processes can be prioritised as described in the section on priorities.

System ::= 'system' ID ((',"'" | '<") ID)* ';'

Templates without parameters are instantiated into exactly one process with the same name as the
template. Parameterised templates give rise to one process per combination of arguments, i.e.,
UPPAAL automatically binds any free template parameters. Any such parameter must be either a call-
by-value bounded integer and or a call-by-value scalar. Individual processes can be referenced in
expressions using the grammar for Process given below. Notice that this is already covered by the
grammar for expressions.

Process ::= ID '(' Arguments ')'

It is often desirable to manually bind some or all formal parameters of a template to actual arguments.
This can be done by partial instantiation of templates.

Any progress measures for the model are defined after the system line.
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Example

In this example we use the textual syntax for template declaration as used in the XTA format. In the
GUI, these templates would be defined graphically.

process P()

{

state s...;

}

process Q(int[0,3] a)
{
state t...;

}

system P, Q;

This defines a system consisting of five processes named P, Q(0), Q(1l), Q(2) andQ(3).
Automatic binding of template parameters is very useful in models in which a large number of almost
identical processes must be defined, e.g., the nodes of a network in a model of a communication
protocol. In order to express that, e.g., all Q processes must be in location s, an expression like
forall (i : int[0,31) Q(1i).s suffices.

Template Instantiation

New templates can be defined from existing templates using the grammar for Instantiation. The
new template has the same automaton structure and the same local variables as the template it is
defined from. However, arguments are provided for any formal parameters of the template, thus
changing the interface of the template.

Instantiation ::= ID [ '(' Parameters ')' ] '=' ID '(' Arguments ')' ';'
Template instantiation is most often used to bind formal parameters to actual arguments. The resulting
template is later instantiated into a process by listing it in the system line.

The new template can itself be parameterised. This provides the opportunity to make a partial
instantiation of a template, where some formal parameters are bound while others remain free.
Examples of typical uses are listed below.

For more examples, see the example systems included in the UPPAAL distribution.
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Examples

Renaming
P1L = Q();
P2 = Q();

system P1l, P2;

Q is a template without any formal parameters. P1 and P2 become templates identical to Q. This is
used to make several instances of QO with different names. Notice that P1=0Q ( ) is a shorthand of
P1()=0Q().

Binding parameters

In this example we use the textual syntax for template declaration as used in the XTA format. In the
GUI, these templates would be defined graphically.

process R(int &i, const int 3J)

{

}

int x;

S = R(x, 1);
system S;

Here we bind the formal parameters of R, i and j, to x and 1 respectively. S becomes a template

without any parameters. When listed in the system line, S is instantiated into a process with the same
name.

Partial instantiation

In this example we use the textual syntax for template declaration as used in the XTA format. In the

GUI, these templates would be defined graphically.

process P(int &x, int y, const int n, const int m)

{
}

int v, u;

const struct { int a, b, c¢; } datal2] = { {1, 2, 3}, { 4, 5, 6 } };
Q(int &x, const int i) = P(x, datal[il.a, data[i].b, 2 * datal[il.c);
Ql = Q(VI O);

Q2 = Q(u, 1);

system Q1, Q2;



Here P is a template with four formal parameters integer parameters. The first must be passed by
reference, the remaining by value. Q is a template with two formal integer parameters. The first must
be passed by reference, the second by value. Q1 is equivalentto P(v, data[0].a, datal[0].Db,
2 * data[0].c.

This is very convenient when defining many instances of the same template with almost the same
arguments. It is also useful to bind some formal parameters and leave others free. When the resulting
template is listed in the system line, UPPAAL will create a process for each possible combination of
arguments to the free parameters.

Progress Measures

A progress measure is an expression that defines progress in the model. It should be weakly
monotonically increasing, although occasional decreasses are acceptable. E.g. sequence numbers used
in communication protocols might be used to define a progress measure, provided that the sequence
number does not overflow to often.

If progress measures are defined, UPPAAL uses the generalized sweepline method to reduce the
memory usage. However to be efficient, the domain of a progress measure should not be too large -
otherwise performance might degrade significantly.

Progress measures are placed after the system definition. The syntax is defined by the grammar for

ProgressDecl:
ProgressDecl ::= 'progress' '{' ( Expression ';' )* '}'
Examples

int i, 3, k;

progress

{
ij

j o+ k;

For the above to be a useful progress measure, i and j + k should increase weakly monotonically.

Priorities

Given some priority order on the transitions, the intuition is that, at a given time-point, a transition is
enabled only if no higher priority transition is enabled (see also Semantics.) We say that the higher
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priority transition blocks the lower priority transition.

Priorities can be assigned to the channels and processes of a system. The priority orders defined in the
system are translated into a priority order on tau-transitions and synchronizing transitions. Delay
transitions are still non-deterministic (unless urgent channels are used.)

« Priorities on Channels
- Priorities on Processes

« Priorities on both Channels and Processes

Priorities on Channels

ChanPriority ::= 'chan' 'priority' (ChanExpr | 'default') ((',' | '<') (ChanExpr |
'default'))* ';'
ChankExpr ::= ID

| ChanExpr '[' Expression ']'

A channel priority declaration can be inserted anywhere in the global declarations section of a system
(only one per system). The priority declaration consist of a list of channels, where the '<' separator
defines a higher priority level for channels listed on its right side. The default priority level is used
for all channels that are not mentioned, including tau transitions.

Note: the channels listed in the priority declaration must be declared earlier.

Example

chan a,b,c,d[2],e[2];
chan priority a,d[0] < default < b,e;

The example assigns the lowest priority to channels a and d[ 0 ], and the highest priority to channels
b,e[0] and e[ 1]. The default priority level is assigned to channels c and d[ 1 ].

Priorities on Processes

Process priorities are specified on the system line, using the separator '<' to define a higher priority for
processes to its right. If an instance of a template set is listed, all processes in the set will have the same
priority.

Example

system A < B,C < D;

Resolving Synchronization

In a synchronisation the process priorities are ambigous, because more than one process is involved in



such a transition.

When two processes A and B synchronize the priority of the transition is the pair (B,A), where B is the
higher priority process. When there are two potential transitions with priorities (B,A) and (D,C), the
priorities of B and D are compared. If B > D then (B,A) blocks (D,C), and if D > B then (D,C) blocks
(B,A). When B=D we compare the priorities of A and C and resolve the priority of the transitions
accordingly.

For a broadcast synchronization the priority is represented as an ordered tuple of descending process
priorities, in a similar manner to the pairs used for binary synchronisations.

Priorities on both Channels and Processes

In a system with priorities on both processes and channels, priorities are resolved by comparing
priorities on channels first. If they are the same, the process priorities are compared.

Scope Rules

The scope rules determine which element a name refers to in a given context. The context is either
local (to a process template), or global (in a system description).

In a local context, the names are always referring to local declarations or formal parameters (if the
name is locally defined), otherwise to a globally declared name.

In the global context, a name is always referring to a global declaration.

Note: There is only one name space in each context. This means that in each context all declared
clocks, integer variables, constants, locations, and formal paramters must have unique names.
However, local names may shadow globally declared names.

Semantics

In the following we give a pseudo-formal semantics for UPPAAL. The semantics defines a timed
transition system (S, s0, ->) describing the behaviour of a network of extended timed automata. The set
of states S is defined as {(L, v) | v satisfies Inv(L)}, where L is a location vector, v is a function (called a
valuation) mapping integer variables and clocks to their values, and Inv is a function mapping locations
and location vectors to invariants. The initial state sO is the state where all processes are in the initial
location, all variables have their initial value, and all clocks are zero. The transition relation, ->,
contains two kinds of transitions: delay transitions and action transitions. We will describe each type
below.

Given a valuation v and an expression e, we say that v satifies e if e evaluates to non-zero for the given
valuation v.



Invalid Evaluations

If during a successor computation any expression evaluation is invalid (consult the section on
expressions for further details about invalid evaluations), the verification is aborted.

Delay Transitions

Delay transitions model the passing of time without changing the current location. We have a delay
transition (L, v) --(d)--> (L, v"), where d is a non-negative real, if and only if:

« v'=v+d, where v+d is obtained by incrementing all clocks with d.

- forall 0 <=d'<=d: v + d'satisfies Inv(L)

L contains neither committed nor urgent locations

- for all locations / in L and for all locations /' (not necessarily in L), if there is an edge from [ to I
then either:

« this edge does not synchronise over an urgent channel, or

- this edge does synchronise over an urgent channel, but for all 0 <= d' <= d we have that v + d’

does not satisfy the guard of the edge.

Action Transitions

For action transtions, the synchronisation label of edges is important. Since UPPAAL supports arrays
of channels, we have that the label contains an expression evaluating to a channel. The concrete
channel depends on the current valuation. To avoid cluttering the semantics we make the simplifying
assumption that each synchronisation label refers to a channel directly.

Priorities increase the determinism of a system by letting a high priority action transition block a lower
priority action transition. Note that delay transitions can never be blocked, and no action transition can
be blocked by a delay transition.

For action transitions, there are three cases: Internal transitions, binary synchronisations and broadcast
synchronisations. Each will be described in the following.

Internal Transitions
We have a transition (L, v) --*--> (L', v') if there is an edge e=(/,!) such that:

« there is no synchronisation label on e

- v satisfies the guard of e

- L'=L[I7]

- v'is obtained from v by executing the update label given on e
« v'satisfies Inv(L')

« Either / is committed or no other location in L is committed.
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« There is no action transition from (L, v) with a strictly higher priority.

Binary Synchronisations

We have a transition (L, v) --*--> (L', v") if there are two edges e/=(l1,11") and e2=(12,/2") in two
different processes such that:

+ el has a synchronisation label ¢!/ and e2 has a synchronisation label ¢?, where c is a binary
channel.

- v satisfies the guards of e/ and e2.

- L'=L[lI7I, 12712]

« v'is obtained from v by first executing the update label given on e/ and then the update label
given on e2.

« v'satisfies Inv(L")

« Either

« 11 or I2 or both locations are committed, or
+ no other location in L is committed.
+ There is no action transition from (L, v) with a strictly higher priority.

Broadcast Synchronisations

Assume an order pl, p2, ... pn of processes given by the order of the processes in the system
declaration statement. We have a transition (L, v) --*--> (L', v') if there is an edge e=(/,!") and m edges
ei=(li,[i") for 1<=i<=m such that:

« Edgese, el, e2, ..., em are in different processes.

« el, e2,.... em are ordered according to the process ordering pl, p2,... pn.

« e has a synchronisation label ¢/ and e/, €2, ... em have synchronisation labels c?, where c is a
broadcast channel.

- v satisfies the guards of e, el, €2, ... em.

« For all locations / in L not a source of one of the edges e, el, €2, ... em, all edges from [ either
do not have a synchronisation label ¢? or v does not satisfy the guard on the edge.

« L'=L[I7, 117, 12712, ... Im7/Im]

« v'is obtained from v by first executing the update label given on e and then the update labels
given on ei for increasing order of i.

« v'satisfies Inv(L")

 Either

- one or more of the locations [, [/, [2, ... Im are committed, or
+ no other location in L is committed.
+ There is no action transition from (L, v) with a strictly higher priority.
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Requirements

In this help section we give a BNF-grammar for the requirement specification language used in the
verifier of UPPAAL.

Prop ::= 'A[]' Expression | 'E<>' Expression | 'E[]' Expression
| A<> Expression | Expression --> Expression

All expressions must be side effect free. It is possible to test whether a certain process is in a given
location using expressions on the form process.location.

See also: Semantics of the Requirement Specification Language

Examples

« A[] 1xk2
invariantly 1<2.
« E<> pl.cs and p2.cs
true if the system can reach a state where both process p1 and p2 are in their locations cs.
« A[] pl.cs imply not p2.cs
invariantly process pl in location cs implies that process p2 is not in location cs.
« A[] not deadlock
invariantly the process is not deadlocked.

Semantics of the Requirement Specification

Language

In the following we give a pseudo-formal semantics for the requirement specification language of
UPPAAL. We assume the existens of a timed transition system (S, s0, ->) as defined in the semantics
of UPPAAL. In the following, p and g are state properties for which we define the following temporal

properties:

Possibly

The property E<> p evaluates to true for a timed transition system if and only if there is a sequence of
alternating delay transitions and action transitions s0-->s/-->...-->sn, where s0 is the initial state and sn
satisfies p.

Invariantly

The property A[ ] p evaluates to true if (and only if) every reachable state satisfy p.
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An invariantly property A[ ] p can be expressed as the possibly property not E<> not p.

Potentially always

The property E[ ] p evaluates to true for a timed transition system if and only if there is a sequence of
alternating delay or action transitions sO-->s/-->...-->si-->... for which p holds in all states si and which
either:

« 1is infinite, or
» ends in a state (Ln, vn) such that either

« forall d: (Ln, vn + d) satisfies p and Inv(Ln), or
- there is no outgoing transition from (Ln, vn)

Eventually

The property A<> p evaluates to true if (and only if) all possible transition sequences eventually
reaches a state satisfying p.

An eventually property A<> p can be expressed as the potentially property not E[] not p.

Leads To

The syntax p ——> g denotes a leads to property meaning that whenever p holds eventually g will
hold as well. Since UPPAAL uses timed automata as the input model, this has to be interpreted not
only over action transitions but also over delay transitions.

A leads to property p ——> g can be expressed as the property A[ ] (p imply A<> q).

State Properties

Any side-effect free expression is a valid state property. In addition it is possible to test whether a
process is in a particular location and whether a state is a deadlock. State proprerties are evaluated for
the initial state and after each transition. This means for example that a property A[ ] i != 1 might
be satisfied even if the value of 1 becomes 1 momentarily during the evaluation of initializers or
update-expressions on edges.

Locations

Expressions on the form P. 1, where P is a process and 1 is a location, evaluate to true in a state (L, v)
if and only if P./isin L.

Deadlocks

The state property deadlock evaluates to true for a state (L, v) if and only if for all d >= 0 there is no



action successor of (L, v + d).

Property Equivalences

The UPPAAL requirement specification language supports five types of properties, which can be
reduced to two types as illustrated by the following table.

Name Property Equivalent to
Possibly E<> p
Invariantly All p not E<> not p
Potentially always E[] p
Eventually A<> p not E[] not p
Leads to p ——> g A[] (p imply A<> q)

Expressions

Most of the expression syntax of UPPAAL coincides with that of C, C++ and Java. E.g. assignments
are done using the '=' operator (the older ":=' still works, but '=' is preferred). Notice that assignments
are them self expressions.

The syntax of expressions is defined by the grammar for Expression.

Expression ::= ID
| NAT
| Expression '[' Expression ']'
| '(' Expression ')'
| Expression '+4++4' | '++4' Expression
| Expression '--' | '--' Expression
| Expression Assign Expression
| Unary Expression
| Expression Binary Expression
| Expression '?' Expression ':' Expression
| Expression '.' ID
| Expression '(' Arguments ')'
| 'forall' '"(' ID ':' Type ')' Expression
| 'exists' '"(' ID ':' Type ')' Expression
| 'deadlock' | 'true' | 'false'
Arguments ::= [ Expression ( ',' Expression )* ]
Assign L B B o B B N Y vy="
[ =" '&=" | "=t | =" ] =t
Unary pi= "4+ | "= | "IV | 'not!
Binary ti= < | T=" ) == = ) =T ) T
| R B B 2 B S B
| LN A RS S R B 2 B N


http://Identifiers.html/

| <2 | '>?'" | 'or' | 'and' | 'imply'

Like in C++, assignment, preincrement and predecrement expressions evaluate to references to the first
operand. The inline-if operator does in some cases (e.g. when both the true and false operands evaluate
to compatible references) also evaluate to a reference, i.e., it is possible to use an inline-if on the left
hand side of an assignment.

The use of the deadlock keyword is restricted to the requirement specification language.

Boolean Values

Boolean values are type compatible with integers. An integer value of 0 (zero) is evaluated to false and
any other integer value is evaluated to true. The boolean value t rue evaluates to the integer value 1
and the boolean value false evaluates to the integer value 0. Notice: A comparison like 5 == true

evaluates to false, since t rue evaluates to the integer value 1. This is consistent with C++.

Precedence

UPPAAL operators have the following associativity and precedence, listed from the highest to lowest.
Operators borrowed from C keep the same precedence relationship with each other.

left Of].

right ! ++ -- unary -
left */%

left -+

left <<>>

left <?>?

left <<=>=>

left ==!=

left &

left A

left |

left &&

left |l

right 7

right = =4=-=*=/= %= &=I=<<=>>="=
right not

left and

left or imply



left forall exists

Operators

Anybody familiar with the operators in C, C++, Java or Perl should immediately feel comfortable with
the operators in UPPAAL. Here we summarise the meaning of each operator.

0 Parenthesis alter the evaluation order
(] Array lookup
Infix lookup operator to access process scope
! Logical negation
++ Increment (can be used as both prefix and postfix operator)
-- Decrement (can be used as both prefix and --> --postfix operator)

- Integer subtraction (can also be used as unary negation)

+ Integer addition

* Integer multiplication
/ Integer division

% Modulo

<< Left bitshift
>> Right bitshift

<? Minimum

>? Maximum

< Less than

<= Less than or equal to

== Equality operator

I= Inequality operator

>= Greater than or equal to
> Greater than

& Bitwise and

A Bitwise xor

I Bitwise or

&&  Logical and

I Logical or

?: If-then-else operator

not  Logical negation

and Logical and



or Logical or
imply Logical implication
forall Forall quantifier

exists Exists quantifier
Notice that the keywords not, and and or behave the same as the !, &&, and | | operators, except
that the former have lower precedence.

Expressions Involving Clocks

When involving clocks, the actual expression syntax is restricted by the type checker. Expressions
involving clocks are divided into three categories: Invariants, guards, and constraints:

- An invariant is a conjunction of upper bounds on clocks and differences between clocks, where
the bound is given by an integer expression.

A guard is a conjunction of bounds (both upper and lower) on clocks and differences between
clocks, where the bound is given by an integer expression.

- A constraint is any boolean combination (involving negation, conjunction, disjunction and
implication) of bounds on clocks and differences between clocks, where the bound is given by
an integer expression.

In addition, any of the three expressions can contain expressions (including disjunctions) over integers,
as long as invariants and guards are still conjunctions at the top-level. The full constraint language is
only allowed in the requirement specification language.

Out of Range Errors and Invalid Evaluations

An evaluation of an expression is invalid if out of range errors occur during evalution. This happens in
the following situations:

- Division by zero.

- Shift operation with negative count.

+ Out of range assignment.

« Out of range array index.

« Assignment of a negative value to a clock.

+ Function calls with out of range arguments.

« Function calls with out of range return values.

In case an invalid evaluation occurs during the computation of a successor, i.e., in the evaluation of a
guard, synchronisation, assignment, or invariant, then the verification is aborted.



Quantifiers

An expression forall (ID : Type) Expr evaluates to true if Expr evaluates to true for all
values ID of the type Type. An expression exists (ID : Type) Expr evaluates to true if
Expr evaluates to true for some value ID of the type Type. In both cases, the scope of ID is the inner
expression Expr, and Type must be a bounded integer or a scalar set.

Example

The following function can be used to check if all elements of the boolean array a have the value

true.

bool alltrue(bool a[5])
{

return forall (i : int[0,4]) ali];

}

Identifiers

The valid identifier names are described by the following regular expression: [a-zA-Z_]([a—-zA-
z0-9_1)*

Examples

- a, B, c2, d2
valid identifier names.

- 1, 2a, 3B, 4cb5
invalid identifier names.

Reserved Keywords

The reserved keywords that should not be used as identifier names when defining systems are: chan,
clock, bool, int, commit, const, urgent, broadcast, init, process, state, guard,
sync, assign, system, trans, deadlock, and, or, not, imply, true, false, for,
forall,exists,while,do, if, else, return, typedef, struct, rate,
before_update,after_update,meta, priority, progress, scalar, select, void,
default.

The following keywords are reserved for future use: switch, case, continue, break.
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