Verification using Model Checking http://cl-informatik.uibk.ac.at/teaching/ss07/vmc/

Stefan Blom

Computational Logic Institute of Computer Science University of Innsbruck

SS 2007

- Exercises counting for $\frac{1}{3}$ of the final mark.
 - Practice exercises do not count.
 - Everybody works alone.
- Written exam counting for $\frac{2}{3}$ of the final mark.
 - First attempt in the last week: July 5, 9:00-11:00 SR12.

- Model Specification.
- Property Specification.
- Algorithms

Model Specification

automata based

- timed automata
- annotated finite automata
- basics of state charts (briefly)
- process algebra based
 - basics: actions, sequential compostion, choice
 - intermediate: parallel composition and recursive equations
 - advanced: synchronisation
 - adding in (abstract) data types

Property Specification

- Syntax and semantics of LTL, CTL, CTL*, modal μ -calculus
- Hierarchy of LTL, CTL, CTL*, modal μ -calculus
- Translation between informal descriptions and formula's
- safety, liveness, fairness

For example, if two agents try to get exclusive access to a resource

- Access might be granted to both agents. (safety violation)
- Access might be granted to neither agent. (liveness violation)
- Starvation of one of the agents. (fairness violation)

- automata theoretic approach to LTL
 - LTL to Buechi transformation
 - Nested depth first search
 - Transforming a Buechi Automaton for fairness
- encoding into boolean vector, BDD, SAT.

- small examples only
- problem domains
 - distributed algorithms
 - (e.g. termination detection)
 - communication protocols (e.g. bounded retransmission protocol)
 - safety critical systems (e.g. traffic lights)
- timed automata in Uppaal
 - write simple automata and test against given formula's
 - write formulas to find the mistakes in given models.
- implement definitions and constructions to understand them.

A simple coffee machine

- The top box stands for the users
- The boxes in the middle are the software control components
- The bottom box stand for the physical components
- Communication is by message passing

The brewing component

Preliminaries Examples

The payment component

- messages up/down for brewing component
 - A01 Refill the coffee supply
 - C01 Brew and serve one cup of coffee
- $\bullet\,$ messages up/down for payment component
 - A01 Ask for the proceeds.
 - A02 Send the Proceeds.
 - C01 Amount of money inserted.
 - C02 Refund money.
- messages between components
 - B01 Check if coffee can be served
 - B02 Yes, coffee can be served
 - B03 No, coffee cannot be served
 - B04 Brew and serve one cup of coffee

- [] integer variable
- & delayed execution flag:

These flags can be set like any boolean variable. If a flag is set at the beginning of a new time slice then the corresponding flow (starting with &) is executed.

Preliminaries Examples

Requirements for traffic lights

- Variables $(i \in \{1, 2, 3\}$ represent the direction): boolean R_i, Y_i, G_i states of the colored lights boolean S_i states of the car-waiting sensors timer t_i set to 0 when a car arrives
- What are the requirements?

