Timed Automata

A timed automaton is a finite automaton labeled with actions,
extended with

@ a global set of clocks
@ clock invariants on states
@ clocks guards for on edges
@ clock assignments on the edges
A timed automaton has two types of transitions

@ delay transitions:
clocks may advance while invariant remain satisfied.

@ action transitions:
if the guard is satisfied we may follow an edge and execute the

assigments.
Gputational
L

Stefan Blom Verification using Model Checking

Timed Automata

Clock Constraints

If X is a set of clock variables then
C(X)u=x=<clc=<x|d1 N
where
xeX =e{<,<} ceRf={ceR|c>0} ¢1,0,€C(X)

Note that there there are many variations on the notion of timed
automaton, which differ in their sets of atomic clock constraints.
For example, Uppaal allows the difference of two clocks to be
compared to a constant.

‘ mputational
Tgic

Stefan Blom Verification using Model Checking

Timed Automata

Timed Automaton

A timed automaton is a tuple (X, S, So, X, /, T), where
@ X is a finite alphabet;
S is a set of locations;
So € S is a set of inital states;

]

]

@ X is a set of clock variables;

@ /: S — C(X) assigns location invariants;
"]

T CSxYxC(X)x2XxSisa set of transitions.

A tuple (s, a, ¢, C°, t) corresponds to an a transition from s to
t, which is enabled if ¢ holds and which sets all clocks in C°
to 0.

Gputational
Tgic
Stefan Blom Verification using Model Checking

Timed Automata
Semantics

The semantics of a timed automaton (X, S, Sp, X, /, T) is an
infinite LTS (Q, —, QO), where

o Q=Sx{v:X >R}
o Q¥ =S5y x {v:x— 0}

o (s,v) L(s,v+d)ifd>0andV0<e<d: v+elI(s),
where (v + d)(x) = v(x) + d.
o (s,v) > (s,V)if (s,a,¢,C%) e T, v ¢(s) and

/ 0 ,if x e CO
vi(x) = .
v(x) , otherwise
Gputational
;glC

Timed Automata

Example

So 51
a

anutational
Ygic

Stefan Blom Verification using Model Checking

Timed Automata

Network of Timed Automata

A network of timed automata consists of
@ A set of channels C.

o A set of Timed Automata A; = (X, 5;,S°, X, I;, T;)
(i=1---N), where

Y={r}u{cl,c?|ceC}

and X are shared.

e ¢! stands for send signal on c.
e c? stands for receive signal on c.
e 7 stands for invisible. (sometimes denoted i)

Gputational
Tgic
Stefan Blom Verification using Model Checking

Timed Automata

Semantics (1/2)

The semantics of this network is an infinite LTS (Q, —, Q°), where

o Q:51><"‘X5N><{V:X—>RS_}

0 Q=50 x - xSy x{v:x— 0}

o (5,v) 4 (5,v+d)ifd>0and
Vi: V0O<e<d: v+ellis)

@ A T transition is possible if a single automaton can so such a
step.

@ A T transition is possible if one automaton can send on
channel ¢ (c!) and another can receive (c?).

Gputational
Tgic
Stefan Blom Verification using Model Checking

Timed Automata

Semantics (2/2)

Q (s5,7,¢,C%s)) e Ti, v = ¢(s)
N Jif xe CO
9 v(x)= v(x) , otherwise
) (51"'5i"‘5j“'5N,V)L(Sl"‘s,{“'s{"'SN,V/) |f
Q i#j
e <517C ¢I7 /a ,> € Tlv v):Qb,(s)
<Sj7 a¢]7 J7 J> V):0¢J(S)
o n_ [0 , ifx eCPucC?
0 vi(x) _{ v(x) , otherwise !

anutational
Ygic

Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL

CTL*

Formulas built from
atomic propositions e.g. p,q,r
boolean operators —, V, A
path quantifiers

A All paths

E Exists some path
temporal operators

X neXt state
F Future state
G Globally

U Until

R Release

anutational
T8
Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL

CTL*

State formulas (¢sF)

¢sF = p | ~¢sF | dsF V dsk | dsF AN dsk | Adpr | E dpF

Path formulas (¢pf)

opF = ¢se | ~9pF | dPE V dpF | dPF N dpF |
X ¢pr | Fopr | Goprr | opF U dpr | opF R dpF

Gputational
Tgic
Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL

Semantics of CTL*

A finite state program M over a set of atomic proposition Prop is a
structure

(W, wo, R, V)
where
@ W is a finite set of states
@ wg € W is the initial state
@ RC W x W is an accessibility relation

e V : W — 2P™P assigns truth values to atomic propositions

A path 7 is a possibly infinite list of states (s;);_o, such that
S; R Si+1-

o 7 denotes removing the first k elements.

Gputational
Tgic
Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL
Semantics of CTL*

Given a program M = (W, wp, R, V) and a state s € W:

M;skE=p Vif pe V(s)

M, s = —¢ if Mys b= o

M,s):¢1V¢2, if M,s):(bl or M,$|:¢2

M,s = ¢1 A ¢, if Mys |=¢p1 and M, s |= ¢

M,s = E¢ , if Ipath 7 starting in s such that M, 7 |= ¢
M,s=A¢ ,if Vpath 7 starting ins M, 7w |= ¢

‘ mputational
Tgic

Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL
Semantics of CTL*

M,m = ¢ , if ¢ is a state formula and M, 7(0) = ¢
M,ﬂ":ﬁgb ,ifM,’]TI?éd)
M,W':¢1V¢2, if M,):(251 or M, w):(;52
M,?T’:¢1A¢2, if M,ﬂ'):Cbl and M77T):¢2
M, =X Jif Ml = ¢
MrEF¢ ifIk>0: M7k E
M, = Go¢ Lif Yk >0: M, 7k = ¢

k|
M, = ¢1 U 2, if 3k >0 { \%2 /|<qi2:a/31(fﬂf = ¢1
VO<i<k: M7 [=¢

M,7T|:¢1R¢2'ika20:{ = M, 7k |= ¢

Gputational
Tgic
Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL

Equivalences

A =E-¢
Fo = TrueU ¢
~F¢ =G-o
“Xo =X

(¢1 U ¢2) = =¢1 R =2

anutational
T8
Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL

Subsets of CTL*

Linear Temporal Logic (LTL)

All CTL* formulas of the form A¢, where ¢ is path-quantifier free:

¢ == pl=glong|oVel
Xo|FelGoloUd|oRS

The leading A is omitted.

Gputational
Tgic
Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL

Subsets of CTL*

Computation Tree Logic (CTL)

All CTL* formulas in which a temporal operator is immediately
preceded by a path quantifier:

¢ = pl¢|loVelong]
AX¢ |EX¢ | AF¢ |EF ¢ |AGo | EG o |

Alp U ¢] [E[p U o] | Alp R 9] | E[¢ R ¢]

Gputational
Tgic
Stefan Blom Verification using Model Checking

Syntax and Semantics of CTL*, CTL and LTL
Alternative Notation

Uppaal ATEX CTL
All ¢ A0 ¢ AGo
A<> ¢ AO ¢ AF¢
E[]l ¢ E0¢ EGo
E<> ¢ EQ ¢ EF¢
Y-->¢ ¢ AG(Y — AFp)

anutational
T8
Stefan Blom Verification using Model Checking

	Timed Automata
	Syntax and Semantics of CTL*, CTL and LTL

