# LTL patterns

• *p* will be false after *q*:

$$G(q \rightarrow G \neg p)$$

• *p* becomes true before *q*:

$$eg q \ W \ (p \land \neg q)$$
 $\phi \ W \ \psi \stackrel{\text{def}}{=} (G \ \phi) \lor (\phi \ U \ \psi)$ 

• p is true between q and r:

$$G((q \land \neg r \land F r) \rightarrow (p \ U \ r))$$

• See http://patterns.projects.cis.ksu.edu/ for more.



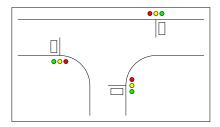
#### Use cases

- Most specifications also provide examples.
- In CTL you can express a property that says that a use case is possible.
- In LTL that property cannot be expressed.
   However, you can express in LTL the impossibility of a use case.

Failure, of such an absense property will tell you that the use case is possible.



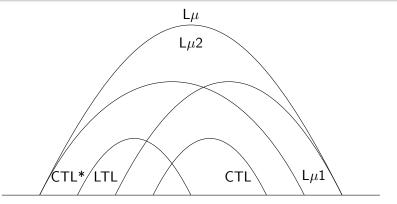
## Requirements for traffic lights



- Variables  $(i \in \{1, 2, 3\}$  represent the direction): boolean  $R_i, Y_i, G_i$  states of the colored lights boolean  $S_i$  states of the car-waiting sensors timer  $t_i$  set to 0 when a car arrives
- What are the requirements?



#### Expressiveness



- L $\mu$ 1 Alternation free  $\mu$ -calculus
- L $\mu$ 2  $\mu$ -calculus with one alternation
  - $L\mu$   $\mu$ -calculus



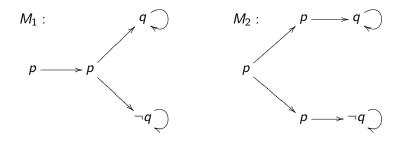
## Limitations of LTL - Example 1

$$\begin{array}{cccc} M_1: & \neg p \longrightarrow p & & M_2: & \neg p \\ & & & & & & & \\ & & & & & & & \\ \end{array}$$

- Every LTL formula, which holds in M<sub>1</sub> holds in M<sub>2</sub>. (The possible computations of M<sub>1</sub> are ¬p<sup>ω</sup> and ¬p<sup>\*</sup> p<sup>ω</sup>. The only computation of M<sub>2</sub> is ¬p<sup>ω</sup>.)
- The CTL formula AG EF p holds in  $M_1$ , but not in  $M_2$ .



## Example 2



- Every LTL formula, which holds in  $M_1$  iff it holds in  $M_2$ . (The computations of both  $M_1$  and  $M_2$  are  $p p q^{\omega}, p p \neg q^{\omega}$ )
- The CTL formula  $AG(p \rightarrow EF q)$  holds in  $M_1$ , but not in  $M_2$ .

mputational

### Leader Election

- Problem of selecting a unique leader among several peers.
- Unique identifiers for peers helps.
- Network topology can complicate matters.
- Potential for clients to crash complicates matters.



### IEEE 1394 'firewire'

- Is a network with a tree topology.
- Nodes do not have a unique identifier.



### IEEE 1394 leader election

The basic idea is to ask another node to be leader.

- First, a node waits for all but one of it's neighbours to ask it to be leader.
   While waiting these requests are acknowledged.
- Second, the node sends a request to the remaining neighbour. Unless, a request from the other node arrives first. In that case the request must be acknowledged and the node becomes the leader. If an acknowledgement arrives then some other node will be leader. If a request arrives after the request has been sent, it must be ignored.
- In this case the node waits for a random timeout (either short or long).

If a request arrives during waiting, the node acknowledges and becomes the leader.

Otherwise, it tries the second step again.



## How to verify using model checking?

- Cannot do it for all networks: there are infinitely many.
  - Select a few networks, randomly or by hand.
  - Verify all networks up to a certain size.
- What are the properties we need to verify?
  - Can we express them all in Uppaal query language?
  - Are there variables that we need to add, just for checking?

