Büchi Automata and LTL model checking

- Büchi Automata recognize infinite words.
- Can be used for LTL model checking: Given an LTL formula and a model:
 - Build a Büchi Automaton F that accepts all executions that fail the LTL formula.
 - Build a Büchi Automaton M that accepts all executions of the model.
 - **③** Build the product automaton $F \times M$ that accepts the intersection.
 - Test for emptiness of $F \times M$.
 - If empty then the formula holds.
 - If non-empty then you have found a counter-example.

A Büchi Automaton over a signature Σ is a structure

$$(S, S^0, \rho, F)$$

where

- S is a finite set of states
- $S^0 \subseteq S$ is a set of initial states
- $\rho: S \times \Sigma \to 2^S$ is a transition function
- $F \subseteq S$ is a set of accepting states

• A run on an infinite word

$$a_1 a_2 \cdots (a_i \in \Sigma)$$

is a sequence

$$s_1 s_2 \cdots (s \in S)$$

such that

$$s_1 \in S^0$$
 $s_{i+1} \in \rho(s_i, a_i)$

• A run is accepting if the set $\{i \mid s_i \in F\}$ is infinite.

• A Büchi Automaton (S, S^0, ρ, F) is deterministic if

$$orall s \in S, a \in \Sigma: |
ho(s,a)| = 1$$

• Non-deterministic Büchi Automata are strictly more powerful than deterministic Büchi Automata

The language of all words with finitely many ones

 $L = \{(0|1)^* 0^{\omega}\}$

can be recognized by a non-deterministic Büchi Automaton, but not by a deterministic one.

The automaton

recognizes L (initial state s_0 , accepting state s_1).

Suppose L can be recognized by a deterministic automaton with n states.

Then executing inputs 0^n from any reachable state, we must have passed through an accepting state. Otherwise we could not recognize 0^{ω} .

That means that executing $0^n 1$ from any reachable state, also passes through an accepting state. Hence the automaton accepts $(0^n 1)^{\omega}$.

Contradiction.

Given Büchi Automata $A_1 \equiv (S_1, S_1^0, \rho_1, F_1)$ and $A_2 \equiv (S_2, S_2^0, \rho_2, F_2)$. Let $A \equiv (S, S^0, \rho, F)$ where • $S = S_1 \times S_2 \times \{1, 2\}$ • $S^0 = S_1^0 \times S_2^0 \times \{1\}$ • $F = F_1 \times S_2 \times \{1\}$ • $\rho((s_1, s_2, i), a) = \{(t_1, t_2, k \mid t_1 \in \rho_1(s_1, a), t_2 \in \rho_2(s_2, a) k = (s_i \in F_i)?(3 - i) : i\}$

Then A accepts iff both A_1 and A_2 accept.

• For a set X, we define

$$\mathcal{B}^+(X) ::= x \mid \mathsf{true} \mid \mathsf{false} \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2$$

where $x \in X$, $\phi_i \in \mathcal{B}^+(X)$.

- An alternating (Büchi) automaton is a structure (S, s^0, ρ, F) where
 - S is a finite set of states
 - $s^0 \in S$ is an initial states
 - $ho: S imes \Sigma
 ightarrow \mathcal{B}^+(S)$ is a transition function
 - $F \subseteq S$ is a set of accepting states

- A run on a word a₁, · · · , a_n (a₁, a₂, · · · n = ∞) is a (possibly infinite) tree, whose nodes are labeled with states, such that
 - The root is labeled with s^0 .
 - Every node has at most |S| children
 - If a node v at depth k < n is labeled with the state s then the children v_1, \cdots, v_r of v are labeled with states s_1, \cdots, s_r such that

$$s_1 \wedge \cdots \wedge s_r \rightarrow \rho(s, a_k)$$

is valid.

- A run is accepting if all nodes at depth *n* are labeled with states from *F*.
- A run is Büchi accepting if every infinite branch contains infinitely many nodes with labels in *F*.

Let $NBA \equiv (S, S^0, \rho, F)$ be a non-deterministic Büchi Automaton. Without loss of generality $S^0 = \{s^0\}$. Define the alternating Büchi Automaton

$$ABA \equiv (S, s^0, (s, a) \mapsto \bigvee \rho(s, a), F)$$

Then NBA and ABA accept the same language.

Alternating vs non-deterministic Büchi Automata

Let $ABA \equiv (S, s^0, \rho, F)$ be an alternating Büchi Automaton Define the non-deterministic Büchi automaton

$$NBA \equiv (2^{S} \times 2^{S}, \{(\{s^{0}\}, \emptyset)\}, \rho', \{\emptyset\} \times F)$$

where

$$\rho'((U, V), a) = \{(X \setminus F, Y \cup (X \cap F)) \mid \exists X, Y \subset S \\ \land X \to \bigwedge_{t \in U} \rho(t, a) \\ \land Y \to \bigwedge_{t \in V} \rho(t, a)\} \\ \rho'((\emptyset, V) = \{(Y \setminus F, Y \cap F) \mid \exists X, Y \subset S \\ \land Y \to \bigwedge_{t \in V} \rho(t, a)\}$$

Then NBA and ABA accept the same language.

