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Exercise 1 (Master Theorem)

Give a recurrence equation for the worst-case running time and a tight asymptotic (Θ-
notation) bound on the worst-case running time of the following algorithms:

a) Binary search in a sorted array of size n.

Searching for a value in a sorted array of size n, we examine the middle value (this
is a constant time operation, hence it is in O(1)). Either this is the value we are
looking for and we are done, or we must search for the value in either the left or
the right half of the array. Thus we obtain a smaller problem of the same type as
we had before. The recurrence we obtain is

T (n) = T (
n

2
) + 1

An application of the master theorem yields

T (n) ∈ Θ(nlog2(1) log(n)) = Θ(log(n))

b) StoogeSort(A, 1, n) where n is the size of the array A.

In total we have three recursive calls of StoogeSort, each of which operates on a
subarray of length 2

3n. All other statements are independent of n, hence constant
time operations. Thus the recurrence we obtain is

T (n) = 3 · T (
2n

3
) + 1

and an application of the master theorem yields

T (n) ∈ Θ(nlog3/2(3)) = Θ(nlog(3)/ log(3/2)) = Θ(n2.7)
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Listing 1 StoogeSort

Input: array A, start index i, stop index j
Output: the array elements A[i..j] are sorted!

1: if A[i] > A[j] then

2: exchange A[i] ↔ A[j]
3: if i + 1 ≥ j then

4: return

5: k := ⌊(j − i + 1)/3⌋
6: StoogeSort(A, i, j − k)
7: StoogeSort(A, i + k, j)
8: StoogeSort(A, i, j − k)

Exercise 2 (Stooge Sort)

Prove that StoogeSort(A, 1, length(A)) correctly sorts the input array A by induction
on the length of A.

Clearly, the algorithm works correctly for one-element and two-element arrays, which
establishes the base case of the induction.

In the inductive step we see that the recursive calls of StoogeSort in Lines 6,7 and
8 operate on strict subarrays of the input array, and we may thus assume that each of
these calls correctly sorts its input (by the induction hypothesis!). So the call in Line 6
correctly sorts the first two thirds of the array.

Having executed this call, clearly every element of the second third of the array is no
smaller than any element of the first third. Thus none of the elements of the first third
should actually end up in the last third, and by inspection of Lines 7 and 8 that is clearly
the case.

At this point we know that all elements that actually belong to the last third (i.e. the
largest elements) are contained in the last two thirds of the array. Hence, executing the
call at Line 7, which sorts the last two thirds of the array, has the effect that all those
elements are now moved to their final position inside the last third.

At this point we know that all elements that actually belong to the first two thirds
are contained in the first two thirds of the array. Hence, executing the call at Line 8,
which sorts the first two thirds of the array, has the effect that all those elements are
now moved to their final position.

Exercise 3 (Quicksort)

Construct a non-trivial example for which quicksort will use Ω(n2) comparisons when
the pivot is chosen by taking the median of the first, last and middle elements of the
sequence ( the median of a finite list of numbers can be found by arranging them from
lowest value to highest value and picking the middle one, e.g. median(4, 3, 5) = 4 ).
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Quicksort runs in Ω(n2) time when in every step of the recursion the pivot divides the
array into two parts, one of which is empty or contains only few elements and the other
of which contains the remaining elements (and thus is much bigger). The exact shape of
such an input array depends on the partition algorithm that is used.

Here is an example that works for the partition algorithm you learnt in the lecture:

1, 3, 5, 7, 9, 2, 4, 6, 8

Running quicksort manually, we see that in every step the array is split into two parts
such that one side always has one element and the other has the rest (minus the pivot
element). For example, at the beginning quicksort(1, 3, 5, 7, 9, 2, 4, 6, 8) chooses 8 as the
pivot element and leads to the following two recursive calls, quicksort([1, 3, 5, 7, 2, 4, 6])
and quicksort([9]). Similarly, quicksort([1, 3, 5, 7, 2, 4, 6]) chooses 6 as the pivot element
and leads to the following two recursive calls, quicksort([1, 3, 5, 2, 4]) and quicksort([7]);
and so on and so forth.

And finally, this is an example that works for Hoare’s original partition algorithm:

1, 3, 5, 7, 9, 2, 6, 4, 8

Exercise 4 (Sorting Algorithms)

a) Implement mergesort in C and incorporate it into the framework of Exercise 3 of
last week.

See listing mysort.c

b) Implement quicksort in C and incorporate it into the framework of Exercise 3 of
last week.

See listing mysort.c
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