
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe und Sarah Winkler

10 June 2008

Proseminar Algorithmen und Datenstrukturen

Exercise Sheet 11

Exercise 1 (Building Heaps)

A heap can be constructed from an array A of size n in two ways, either top-down or
bottom-up.

The top-down method starts by considering A[1] as a heap. In the i + 1-th iteration
A[1, . . . , i] is assumed to be a heap and A[i + 1] is added, i.e. pulled up until the heap
condition holds. This yields the extended heap A[1, . . . , i + 1]. The approach is iterated
until i = n, so the whole array is turned into a heap.

In the bottom-up method, one starts with i = ⌊n/2⌋. In each iteration all subtrees in
A[i + 1, . . . , n] are assumed to satisfy the heap condition. A[i] has one or two children
at positions A[2i] and A[2i + 1], which are by assumption the roots of valid heaps.
After sinking A[i], all subtrees in A[i, . . . , n] are heaps. By decreasing i this approach is
repeated until i = 1, so the whole array satisfies the heap condition.

Now consider the example array

A = [3, 12, 9, 5, 4, 8, 1, 13, 12]

and perform the following operations (on paper):

a) Construct the initial heap for A in a top-down fashion.

b) Construct the initial heap for A using the bottom-up approach.

c) Apply Heapsort to one of the heaps obtained above. Is Heapsort stable?

1



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 11

Exercise 2 (Combining Heaps)

Provide pseudo-code for an algorithm to build one heap that contains all elements of
two given heaps with n and m elements, respectively (where n and m are positive).
Assume that the heaps are given in a tree representation, i.e. each node has links to its
two children. The running time of the algorithm should be O(log (n + m)) in the worst
case.

Exercise 3 (Heapsort in C)

Implement functions sink and buildHeap in C, and use them to incorporate heapsort into
the framework of Exercise 4 of last week.

Exercise 4 (Lower Bound for Searching)

In the lecture you used decision trees to derive an information-theoretic lower bound for
comparison-based sorting: Given a comparison operation that can check for two elements
a and b whether a ≤ b or a > b holds, it was shown that any sorting algorithm using
only such an operation requires Ω(n log n) comparisons.

Use the same technique to show that searching a value in a sorted array requires
Ω(log(n)) comparisons.

2


