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Exercise 1 (Building Heaps)

A heap can be constructed from an array A of size n in two ways, either top-down or
bottom-up.

The top-down method starts by considering A[1] as a heap. In the i + 1-th iteration
A[1, . . . , i] is assumed to be a heap and A[i + 1] is added, i.e. pulled up until the heap
condition holds. This yields the extended heap A[1, . . . , i + 1]. The approach is iterated
until i = n, so the whole array is turned into a heap.

In the bottom-up method, one starts with i = ⌊n/2⌋. In each iteration all subtrees in
A[i + 1, . . . , n] are assumed to satisfy the heap condition. A[i] has one or two children
at positions A[2i] and A[2i + 1], which are by assumption the roots of valid heaps.
After sinking A[i], all subtrees in A[i, . . . , n] are heaps. By decreasing i this approach is
repeated until i = 1, so the whole array satisfies the heap condition.

Now consider the example array

A = [3, 12, 9, 5, 4, 8, 1, 13, 12]

and perform the following operations (on paper):

a) Construct the initial heap for A in a top-down fashion.

Solution.
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b) Construct the initial heap for A using the bottom-up approach.

Solution.
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c) Apply Heapsort to one of the heaps obtained above. Is Heapsort stable?

Solution.

One obtains the following sequence of arrays (the bold values are already fixed):

[13, 12, 9, 12, 4, 8, 1, 5, 3] initial array from heap in b)

i = 9 [12, 12, 9, 5, 4, 8, 1, 3,13] swap 13 and 3, sink 3

i = 8 [12, 5, 9, 3, 4, 8, 1,12,13] swap 12 and 3, sink 3

i = 7 [9, 5, 8, 3, 4, 1,12, 12, 13] swap 12 and 1, sink 1

i = 6 [8, 5, 1, 3, 4,9,12, 12, 13] swap 9 and 1, sink 1

i = 5 [5, 4, 1, 3,8,9,12,12,13] swap 8 and 4, sink 4

i = 4 [4, 3, 1,5,8,9,12,12,13] swap 5 and 3, sink 3

i = 3 [3, 1,4,5,8,9,12,12,13] swap 4 and 1, sink 1

i = 2 [1,3,4,5,8,9,12,12, 13] swap 3 and 1
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The two elements with key 12 are exchanged during sorting, thus Heapsort is not
stable.

Exercise 2 (Combining Heaps)

Provide pseudo-code for an algorithm to build one heap that contains all elements of
two given heaps with n and m elements, respectively (where n and m are positive).
Assume that the heaps are given in a tree representation, i.e. each node has links to its
two children. The running time of the algorithm should be O(log (n + m)) in the worst
case.

Solution.

The idea is to remove a leaf from h1 and use it as a root having the two given heaps
as children. This requires O(log n) comparisons. To establish the heap condition, the
root element has to be sunk into the heap with n + m elements which takes at most
O(log (n + m)) comparisons.

For details, see Listing ??.

Exercise 3 (Heapsort in C)

Implement functions sink and buildHeap in C, and use them to incorporate heapsort into
the framework of Exercise 4 of last week.

Solution.

See sort.c.

Exercise 4 (Lower Bound for Searching)

In the lecture you used decision trees to derive an information-theoretic lower bound for
comparison-based sorting: Given a comparison operation that can check for two elements
a and b whether a ≤ b or a > b holds, it was shown that any sorting algorithm using
only such an operation requires Ω(n log n) comparisons.

Use the same technique to show that searching a value in a sorted array requires
Ω(log(n)) comparisons.

Solution.

When searching a specific key in an array with n elements, there are n + 1 possible
outcomes: either the element at some position between 1 and n matches the key, or no
such element is found. Thus a decision tree realizing search in a sorted array needs to
have n + 1 leaves, which requires it to have depth Ω(log(n)).
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Listing 1 Combining Heaps

1: function combine(h1, h2 : ˆ heap) : ˆ heap
2: begin

3: root := deleteLeaf(&h1); /* delete some leaf */
4: rootˆ.left := h1; /* place it as new root */
5: rootˆ.right := h2;
6: sink(root); /* let the root sink into the heap */
7: return root ;
8: end

9: function deleteLeaf (Rp : ˆˆ heap) : ˆ heap
10: begin

11: P := nil ;
12: R := Rpˆ;
13: while Rˆ.left 6= nil or Rˆ.right 6= nil do

14: P := R;
15: if Rˆ.left 6= nil then

16: R := Rˆ.left ;
17: else

18: R := Rˆ.right ;
19: if P 6= nil then

20: if Pˆ.left = R then

21: Pˆ.left := nil; /* delete left child */
22: else

23: Pˆ.right := nil; /* delete right child */
24: else

25: Rpˆ = nil ; /* root deleted – heap is empty now */
26: return R;
27: end

28: procedure sink(R : ˆ heap)
29: begin

30: while (Rˆ.left 6= nil and Rˆ.leftˆ.key > Rˆ.key) or
(Rˆ.right 6= nil and Rˆ.rightˆ.key > Rˆ.key) do

31: if Rˆ.left = nil or (Rˆ.right 6= nil and Rˆ.rightˆ.key > Rˆ.leftˆ.key) then

32: max := Rˆ.rightˆ.key /* sink to the right – swap keys */
33: Rˆ.rightˆ.key := Rˆ.key
34: Rˆ.key := max
35: R := Rˆ.right /* continue sinking at R */
36: else

37: max := Rˆ.left /* sink to the left – swap keys */
38: Rˆ.leftˆ.key := Rˆ.key
39: Rˆ.key := max
40: R := Rˆ.left /* continue sinking at R */
41: end
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