
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe und Sarah Winkler

10 June 2008

Proseminar Algorithmen und Datenstrukturen

Exercise Sheet 11

Exercise 1 (Building Heaps)

A heap can be constructed from an array A of size n in two ways, either top-down or
bottom-up.

The top-down method starts by considering A[1] as a heap. In the i + 1-th iteration
A[1, . . . , i] is assumed to be a heap and A[i + 1] is added, i.e. pulled up until the heap
condition holds. This yields the extended heap A[1, . . . , i + 1]. The approach is iterated
until i = n, so the whole array is turned into a heap.

In the bottom-up method, one starts with i = ⌊n/2⌋. In each iteration all subtrees in
A[i + 1, . . . , n] are assumed to satisfy the heap condition. A[i] has one or two children
at positions A[2i] and A[2i + 1], which are by assumption the roots of valid heaps.
After sinking A[i], all subtrees in A[i, . . . , n] are heaps. By decreasing i this approach is
repeated until i = 1, so the whole array satisfies the heap condition.

Now consider the example array

A = [3, 12, 9, 5, 4, 8, 1, 13, 12]

and perform the following operations (on paper):

a) Construct the initial heap for A in a top-down fashion.

Solution.

3

12

5

13 12

4

9

8 1

12

3

5

13 12

4

9

8 1

12

3

5

13 12

4

9

8 1

initially, only 3 is in the
heap

12 is added and pulled to
the root

adding 9 does not destroy
the heap property

1



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 11

12

5

3

13 12

4

9

8 1

13

12

5

3 12

4

9

8 1

13

12

12

3 5

4

9

8 1

5 is added and pulled up
one level; adding 4, 8 and
1 does not affect the heap
property

13 gets drawn up to the
root

finally, adding 12 requires
to pull it up one level

b) Construct the initial heap for A using the bottom-up approach.

Solution.

3

12

5

13 12

4

9

8 1

3

12

13

5 12

4

9

8 1

3

12

13

5 12

4

9

8 1

initially, all leaves are in
the heap

5 is added and sunk down adding 9 does not destroy
the heap property

3

13

12

5 12

4

9

8 1

13

12

12

5 3

4

9

8 1

when adding 12, it sinks
one level down

after adding and sinking 3
the heap is established

c) Apply Heapsort to one of the heaps obtained above. Is Heapsort stable?

Solution.

One obtains the following sequence of arrays (the bold values are already fixed):

[13, 12, 9, 12, 4, 8, 1, 5, 3] initial array from heap in b)

i = 9 [12, 12, 9, 5, 4, 8, 1, 3,13] swap 13 and 3, sink 3

i = 8 [12, 5, 9, 3, 4, 8, 1,12,13] swap 12 and 3, sink 3

i = 7 [9, 5, 8, 3, 4, 1,12, 12, 13] swap 12 and 1, sink 1

i = 6 [8, 5, 1, 3, 4,9,12, 12, 13] swap 9 and 1, sink 1

i = 5 [5, 4, 1, 3,8,9,12,12,13] swap 8 and 4, sink 4

i = 4 [4, 3, 1,5,8,9,12,12,13] swap 5 and 3, sink 3

i = 3 [3, 1,4,5,8,9,12,12,13] swap 4 and 1, sink 1

i = 2 [1,3,4,5,8,9,12,12, 13] swap 3 and 1

2



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 11

The two elements with key 12 are exchanged during sorting, thus Heapsort is not
stable.

Exercise 2 (Combining Heaps)

Provide pseudo-code for an algorithm to build one heap that contains all elements of
two given heaps with n and m elements, respectively (where n and m are positive).
Assume that the heaps are given in a tree representation, i.e. each node has links to its
two children. The running time of the algorithm should be O(log (n + m)) in the worst
case.

Solution.

The idea is to remove a leaf from h1 and use it as a root having the two given heaps
as children. This requires O(log n) comparisons. To establish the heap condition, the
root element has to be sunk into the heap with n + m elements which takes at most
O(log (n + m)) comparisons.

For details, see Listing ??.

Exercise 3 (Heapsort in C)

Implement functions sink and buildHeap in C, and use them to incorporate heapsort into
the framework of Exercise 4 of last week.

Solution.

See sort.c.

Exercise 4 (Lower Bound for Searching)

In the lecture you used decision trees to derive an information-theoretic lower bound for
comparison-based sorting: Given a comparison operation that can check for two elements
a and b whether a ≤ b or a > b holds, it was shown that any sorting algorithm using
only such an operation requires Ω(n log n) comparisons.

Use the same technique to show that searching a value in a sorted array requires
Ω(log(n)) comparisons.

Solution.

When searching a specific key in an array with n elements, there are n + 1 possible
outcomes: either the element at some position between 1 and n matches the key, or no
such element is found. Thus a decision tree realizing search in a sorted array needs to
have n + 1 leaves, which requires it to have depth Ω(log(n)).

3



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 11

Listing 1 Combining Heaps

1: function combine(h1, h2 : ˆ heap) : ˆ heap
2: begin

3: root := deleteLeaf(&h1); /* delete some leaf */
4: rootˆ.left := h1; /* place it as new root */
5: rootˆ.right := h2;
6: sink(root); /* let the root sink into the heap */
7: return root ;
8: end

9: function deleteLeaf (Rp : ˆˆ heap) : ˆ heap
10: begin

11: P := nil ;
12: R := Rpˆ;
13: while Rˆ.left 6= nil or Rˆ.right 6= nil do

14: P := R;
15: if Rˆ.left 6= nil then

16: R := Rˆ.left ;
17: else

18: R := Rˆ.right ;
19: if P 6= nil then

20: if Pˆ.left = R then

21: Pˆ.left := nil; /* delete left child */
22: else

23: Pˆ.right := nil; /* delete right child */
24: else

25: Rpˆ = nil ; /* root deleted – heap is empty now */
26: return R;
27: end

28: procedure sink(R : ˆ heap)
29: begin

30: while (Rˆ.left 6= nil and Rˆ.leftˆ.key > Rˆ.key) or
(Rˆ.right 6= nil and Rˆ.rightˆ.key > Rˆ.key) do

31: if Rˆ.left = nil or (Rˆ.right 6= nil and Rˆ.rightˆ.key > Rˆ.leftˆ.key) then

32: max := Rˆ.rightˆ.key /* sink to the right – swap keys */
33: Rˆ.rightˆ.key := Rˆ.key
34: Rˆ.key := max
35: R := Rˆ.right /* continue sinking at R */
36: else

37: max := Rˆ.left /* sink to the left – swap keys */
38: Rˆ.leftˆ.key := Rˆ.key
39: Rˆ.key := max
40: R := Rˆ.left /* continue sinking at R */
41: end

4


