
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe and Sarah Winkler

17 June 2008

Proseminar Algorithmen und Datenstrukturen

Exercise Sheet 12

Exercise 1 (Combined Sorting)

In the last exercise sheets you implemented several different sorting algorithms. All these
sorting problems had one thing in common, they used the same algorithm for the whole
problem, independent of the problem size. Another strategy for sorting is to use a divide
and conquer algorithm for large problems and when the problem gets small enough the
algorithm switches to more suitable one. The decision what algorithm is used is made
during the sorting process after a certain subproblem size was reached.

a) Extend the sorting framework from the previous exercises with the ability to mea-
sure the runtime of the different algorithms. (Hint use gettimeofday for measuring
time).

b) Try different sorting algorithms for different problem sizes and measure what al-
gorithm is suitable for which problem size. Give an explanation of your results.
SOLUTION: After measuring the execution time with 20000 tests on each input
array and between 100 and 1000 different input arrays. It became clear that the
threshold between quick sort and insert sort will be at n = 11.

c) Use the results from above to implement a combined sorting algorithm that uses
a divide and conquer based algorithm for large problem sizes and a simpler, more
suitable algorithm for smaller subproblems. Set the threshold for the problem size
according to your results from the exercise above. Integrate your algorithm into
the existing framework from the previous exercises.

d) Compare the execution time of the new combined sorting algorithm with the other
“Text in standalone” algorithms.

1

Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 12

Exercise 2 (Choose the right sorting algorithm)

Given are several scenarios where sorting algorithms are applied. Choose an appropriate
sorting algorithm and explain why the algorithm was chosen:

a) Given is a list of people sorted by their year of birth. Sort them by their resting
pulse rate. (Hint: the higher the age the lower the resting puls rate)
SOLUTION: Because the list is sorted by year of birth it is almost sorted by
puls. Therefore insertion sort is a good algorithm for this problem.

b) Given is a cryptographic algorithm that facilitates a sorting algorithm as part of
its implementation. Which algorithms can prevent timing attacks?
SOLUTION: A good solution would be heapsort because it provides stable run-
time behaviour.

c) Given is an alphabetic sorted list of students of the university of Innsbruck. Find
an appropriate algorithm for sorting the list by the first two digits (year) of the
matriculation number.
SOLUTION: A good solution would be bucket sort. Because the number of digits
is known in advance and the number of buckets are at maximum 100. All Students
can be sorted within O(n).

Exercise 3 (Hashtables)

a) Give the pseudo code for searching and inserting into a hash table with open
addressing. Within the pseudo code h(k, i) represents the hash function and m
represents the size of the hash table. Think about how empty can be represented
within the hashtable.

SOLUTION:

b) Construct a hash table for the following values by hand: [5, 10, 20002, 40, 2512,
3480, 97, 31]. Use open addressing with linear- and quadratic probing and double
hashing. Use m = 11 as the size of the hashtable and h(x) = x mod 11 as the
hashing function. Assume for quadratic probing c1 = 0 and c2 = 1. For double
hashing assume h2(k) = 1 + k mod 10 as the second hash function.

2

Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 12

Listing 1 Hash Insert

Input: T : A list that represents the hashtable the new key will be inserted into.
k : the key that should be stored in the hashtable.

Output: i : if it was possible to insert the key the return value will be 1 otherwise 0.

1: begin

2: i := 0;
3: repeat

4: j := h(k , i); /* h is the hash function that is used for determining the next place
for insertion */

5: if T [j] = −1 then

6: T [j] := k ;
7: return 1;
8: else

9: i := i + 1;
10: until i=m
11: return 0;
12: end

k = 5 [−1,−1,−1,−1,−1, 5,−1,−1,−1,−1,−1] insert at 5; 0 collisions

k = 10 [−1,−1,−1,−1,−1, 5,−1,−1,−1,−1, 10] insert at 10; 0 collisions

k = 20002 [−1,−1,−1,−1, 20002, 5,−1,−1,−1,−1, 10] insert at 4; 0 collisions

k = 40 [−1,−1,−1,−1, 20002, 5,−1, 40,−1,−1, 10] insert at 7; 0 collisions

k = 2512 [−1,−1,−1,−1, 20002, 5, 2512, 40,−1,−1, 10] insert at 6; 2 collisions

k = 3480 [−1,−1,−1,−1, 20002, 5, 2512, 40, 3480,−1, 10] insert at 8; 4 collisions

k = 97 [−1,−1,−1,−1, 20002, 5, 2512, 40, 3480, 97, 10] insert at 9; 0 collisions

k = 31 [31,−1,−1,−1, 20002, 5, 2512, 40, 3480, 97, 10] insert at 0; 2 collisions

3

Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 12

Listing 2 Hash Search

Input: T : A list that represents the hashtable the new key will be inserted into.
k : the key that should be stored in the hashtable.

Output: i : if the value was found the return value will be 1 otherwise 0.

1: begin

2: i := 0;
3: repeat

4: j := h(k, i); /* h is the hash function that is used for determining the next place
for insertion */

5: if T [j] = k then

6: return 1
7: i := i + 1;
8: until T [j] = −1 ∨ i = m
9: return 0;

10: end

Solution for open addressing with quadratic probing

k = 5 [−1,−1,−1,−1,−1, 5,−1,−1,−1,−1,−1] insert at 5; 0 collisions

k = 10 [−1,−1,−1,−1,−1, 5,−1,−1,−1,−1, 10] insert at 10; 0 collisions

k = 20002 [−1,−1,−1,−1, 20002, 5,−1,−1,−1,−1, 10] insert at 4; 0 collisions

k = 40 [−1,−1,−1,−1, 20002, 5,−1, 40,−1,−1, 10] insert at 7; 0 collisions

k = 2512 [−1,−1,−1,−1, 20002, 5,−1, 40, 2512,−1, 10] insert at 8; 2 collisions

k = 3480 [−1,−1, 3480,−1, 20002, 5,−1, 40, 2512,−1, 10] insert at 2; 3 collisions

k = 97 [−1,−1, 3480,−1, 20002, 5,−1, 40, 2512, 97, 10] insert at 9; 0 collisions

k = 31 [−1,−1, 3480, 31, 20002, 5,−1, 40, 2512, 97, 10] insert at 3; 4 collisions

Solution for open addressing with double hashing

k = 5 [−1,−1,−1,−1,−1, 5,−1,−1,−1,−1,−1] insert at 5; 0 collisions

k = 10 [−1,−1,−1,−1,−1, 5,−1,−1,−1,−1, 10] insert at 10; 0 collisions

k = 20002 [−1,−1,−1,−1, 20002, 5,−1,−1,−1,−1, 10] insert at 4; 0 collisions

k = 40 [−1,−1,−1,−1, 20002, 5,−1, 40,−1,−1, 10] insert at 7; 0 collisions

k = 2512 [−1,−1, 2512,−1, 20002, 5,−1, 40,−1,−1, 10] insert at 2; 3 collisions

k = 3480 [−1,−1, 2512,−1, 20002, 5, 3480, 40,−1,−1, 10] insert at 6; 2 collisions

k = 97 [−1,−1, 2512,−1, 20002, 5, 3480, 40,−1, 97, 10] insert at 9; 0 collisions

k = 31 [31,−1, 2512,−1, 20002, 5, 3480, 40,−1, 97, 10] insert at 0; 1 collisions

4

Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 12

Exercise 4 (Hashing and C-Compiler)

Assume you want to write a C-compiler. Every C-program consists of identifiers (function-
, variable names). As the compiler needs to find identifiers fast, a hash table would be
the right choice for storing such identifiers.

a) Estimate an appropriate size for the hash table depending on the size of the input.

SOLUTION:

One could estimate the size of the hashtable as N ≈ #C/10, where #C is the
number of characters occurring in the source code.

b) Create a hash function that is able to convert the given identifiers into hash codes.

SOLUTION:

For an identifier s = sn · · · s0, one could choose the hash function

h(s) =

n∑

i=0

c(si) · p
i mod N

for a prime number p and N being the size of the hash table, where c(si) is the
ASCII code associated with a character si.

c) Find reasons why the hashing could have a bad runtime behaviour? Give an ex-
ample program that will have these problems.

SOLUTION:

• There could occur more identifiers than expected in the source code snippet.

For example, #C/10 = 51/10 underestimates the number of identifiers in the
following piece of code:

int main (){ int a , b , c , d , e , f , g , h , i , j , k ; }

• If the hash function is known in advance the identifiers could be chosen that
each identifier would get into the same place of the hash table.

For example, in the program

#include <s td i o . h>

void exchange (int a [] , int i , int j){
int buf = a [i] ;
a [i] = a [j] ;
a [j] = buf ;

}

void bubb lesor t (int somearray [] , int val){
int i , j ;

5

Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 12

for (i = 0 ; i < val −1; i++){
for (j =0; j < val−1− i ; j++)
i f (somearray [j] > somearray [j +1])
exchange (somearray , j , j +1);

}
}

int main () {
int somearray [] = {1 , 4 , 5 , 7 , 9 , 2 , 34 , 1 , 78 , 9 , 0} ;
bubb lesor t (somearray , 11) ;
int i ;
for (i =0; i< 11 ; i++)
p r i n t f (”%d ” , somearray [i]) ;

return 0 ;
}

with a bit more than 400 characters, one could choose N = 41. Taking p =
23, the identifiers main and val obtain hash value 22 while exchange, i,
buf, bubblesort and somearray are all mapped to value 23 and j gets 24.
Especially with linear probing values are significantly clustered.

This can even happen if N is in the magnitude of the number of characters,
where the first problem does no longer appear. Consider the following piece
of code with 183 characters:

int main (){
int i0 , ub , ans = 0 ;
p r i n t f (” Please en te r a number : ”) ;
s can f (”%d” , &ub) ; /∗ read upper bound ∗/
for (i 0 = 0 ; i 0 <= ub ; i++)
ans += i0 ;

p r i n t f (”Sum: %d\n” , ans) ;
}

If one chooses N = 199 and p = 1621, all identifiers (main, i0, ans and ub)
get hash value 108.

6

