
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe and Sarah Winkler

1 July 2008

Proseminar Algorithmen und Datenstrukturen

Exercise Sheet 14

Exercise 1 (Depth-first Search)

Given a directed graph G = (V,E) and some node v ∈ V , write a C program that
numbers all nodes in the graph according to the order in which they are traversed
during depth-first search; the number associated with v should be 1. Make sure that
all nodes are numbered, and that all numbers are different! Use adjacency matrices to
represent graphs!

See listing dfs number.c

Exercise 2 (Depth-first Search)

Given a connected, undirected graph G = (V,E), write a C program that computes a
spanning tree of G using depth-first search. Use adjacency matrices to represent graphs!

See listing dfs spantree.c

Exercise 3 (Connected Components)

Given an undirected graph, provide pseudo-code for the computation of its connected
components.

Exercise 4 (Connected Components)

Given some node v of an undirected graph, provide pseudo-code for the computation of
the number of edges in the connected component v belongs to.

1



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 14

Algorithm 1 Connected components of an undirected graph

Input: G: undirected graph

begin

component number := 1
while v is unmarked in G do

call DFS(v, component number) /*DFS marking nodes with their comp-nr */
component number := component number + 1

end

Algorithm 2 DFS CountEdges, number of edges in connected component of a node

Input: G: undirected graph, v: some node of G

Output: twice the number of egdes of the component v belongs to

begin

mark(v)
for each w adjacent to v do

edgecount := edgecount + 1
if w is unmarked then

call DFS CountEdges(G,w)
end

2


