
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe and Sarah Winkler

22. April 2008

Proseminar Algorithmen und Datenstrukturen

Exercise sheet 5

Exercise 1 (Records)

This exercise deals with representation of records in C.

a) Consider the following C program:

#include <s td i o . h>

struct example s truct { char c1 ; char c2 ; } s ;

int main () {

p r i n t f (” s i z e o f s : %d\n” , s izeof (s)) ;
p r i n t f (” s i z e o f s e lements : %d\n” , s izeof (s . c1)+s izeof (s . c2)) ;

return 0 ;
}

Compile and run it. Now consider the following program:

#include <s td i o . h>

struct example s truct { char c1 ; char c2 ; int i ;} s ;

int main () {

p r i n t f (” s i z e o f s : %d\n” , s izeof (s)) ;
p r i n t f (” s i z e o f s e lements : %d\n” , s izeof (s . i)+ s izeof (s . c1)+s izeof (s . c2)) ;

1

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 5

return 0 ;
}

Consider now the following program:

#include <s td i o . h>

struct example s truct { char c ; int i ;} s ;

int main () {

p r i n t f (” s i z e o f s : %d\n” , s izeof (s)) ;
p r i n t f (” s i z e o f s e lements : %d\n” , s izeof (s . i)+ s izeof (s . c)) ;

return 0 ;
}

And finally this one:

#include <s td i o . h>

struct example s truct { char c1 ; int i ; char c2 ;} s ;

int main () {

p r i n t f (” s i z e o f s : %d\n” , s izeof (s)) ;
p r i n t f (” s i z e o f s e lements : %d\n” , s izeof (s . i)+ s izeof (s . c1)+s izeof (s . c2)) ;

return 0 ;
}

What happens ? Explain the results and give a schema representing what happens
in the memory stack for each of these examples.

In order to understand what is going on we need the notion of memory alignment.
According to the C99 standard memory alignment is the requirement that objects
of a particular type be located on storage boundaries with addresses that are
particular multiples of a byte address. For example, on a processor where an int

occupies 4 bytes, a value of type int is properly aligned if its memory address is a
multiple of 4. Certain processors require that data is properly aligned while others
(e.g. INTEL x86 CPUs) do not have this restriction. However, accessing unaligned
data is in general slower than accessing properly aligned data.

As far as the memory layout of structures is concerned, the C99 standard imposes
the following constraints:

2

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 5

• Each non-bit-field member of a structure object is aligned in an implementation-
defined manner appropriate to its type.

• Within a structure object, the non-bit-field members have addresses that
increase in the order in which they are declared.

• There may be unnamed padding within a structure object, but not at its
beginning.

• There may be unnamed padding at the end of a structure or union.

Regarding the current exercise, we see that when an int is declared after a char,
the compiler obviously adds padding bytes such that the int is properly aligned.

The lesson to be learned from this exercise is that the size of a structure is not
necessarily the same as the sum of the sizes of its members. Hence, do not write
code that relies on this false assumption! The actual memory layout of a structure
object depends on the compiler and the underlying hardware. In addition, most
compilers possess compiler switches that influence the memory layout of structure
objects.

b) Write a program that stores the names, two line addresses and ages of a group of
people. Each person should be stored in a structure. Use an array of such structures
to hold the data for a group of people. Write functions for reading a person’s details
from the standard input stream and for printing a person.

#include <s td i o . h>

#define MAX 10

/∗Read d e t a i l s from stdin , wr i t e output to screen ∗/

struct person
{

char surname [1 5] , i n i t i a l , addres s [2] [2 5] ;
int age ;

} peop le [MAX] ;

void ge t r e co rd (void) ;
void p r i n t r e c o r d (void) ;

int count = 0 ;

int

main ()
{

ge t r e co rd () ;
p r i n t r e c o r d () ;
return 0 ;

3

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 5

}

void

ge t r e co rd (void)
{

int i ;
char repeat = ’y ’ ;
p r i n t f (”Type in the d e t a i l s f o r each person :\ n”) ;
for (i = 0 ; repeat != ’n ’ && repeat != ’N ’ && i < MAX; count = ++i)

{
p r i n t f (”\ nDeta i l s f o r record no.%d\n” , i + 1) ;
p r i n t f (”Name (Surname) : ”) ;
s can f (”%s ” , peop le [i] . surname) ;
getchar () ;
p r i n t f (” I n i t i a l%8c : ” , ’ ’) ;
peop le [i] . i n i t i a l = getchar () ;
p r i n t f (”Address%8c : ” , ’ ’) ;
s can f (”%s ” , peop le [i] . addres s [0]) ;
p r i n t f (”%16c” , ’ ’) ;
s can f (”%s ” , peop le [i] . addres s [1]) ;
p r i n t f (”Age%12c : ” , ’ ’) ;
s can f (”%d” , &peop le [i] . age) ;
getchar () ;
p r i n t f (”\nInput d e t a i l s f o r another person ? ”) ;
r epeat = getchar () ;
f f l u s h (s td in) ;

}
p r i n t f (”\nTotal number o f r ecord s read : %d\n\n” , count) ;

}

void

p r i n t r e c o r d (void)
{

int i ;
for (i = 0 ; i < count ; i++)

{
p r i n t f (”%c . %s” , peop le [i] . i n i t i a l , peop le [i] . surname) ;
p r i n t f (”\ t%d\n” , peop le [i] . age) ;
p r i n t f (”%s \n%s\n” , peop le [i] . addres s [0] , peop le [i] . addres s [1]) ;

}
}

4

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 5

c) Consider the following record (in Pseudo-code):

Listing 1 Records

1: record T =
2: begin

3: n1 : character;
4: n2 : integer;
5: end

6: A is declared as: array [1..10] of array [1..10] of T;
7: B is declared as: array [1..5] of array [1..5] of T;

Given the size of a character is 1 and the size of an integer is 4.

• What’s the size of A?

• What’s the position of A[3][5].n1 in memory relative to the base address of
A?

• What’s the size of B?

• What’s the position of B[2][4].n2 in memory relative to the base address of
B?

• sizeof(A) = 10 ∗ 10 ∗ sizeof(T) = 10 ∗ 10 ∗ (1 + 4) = 500

• position of A[3][5].n1 = ((3 − 1) ∗ 10 + (5 − 1)) ∗ sizeof(T) = 24 ∗ 5 = 120

• sizeof(B) = 5 ∗ 5 ∗ sizeof(T) = 5 ∗ 5 ∗ (1 + 4) = 125

• position of B[2][4].n2 = ((2−1)∗5+(4−1))∗sizeof(T)+sizeof(character) =
8 ∗ 5 + 1 = 41

Exercise 2 (Data structures)

What are the data structures needed to construct:

• a doubly-linked list ?

• a tree with branching factor n ?

• a tree with arbitrary branching factor ?

Give these structures both in pseudo-code and in C code.

Exercise 3 (Linked List)

In this exercise you will implement a linked list: Provide insert, delete, search and print
methods to manipulate the list according to the following specifications:

5

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 5

a) data the data in each cell is an integer.

add this method adds a given integer value at the list head.

delete this method removes a given integer value from the list.

search this method searches the list for a given integer value. It returns TRUE in
case of success, FALSE otherwise.

print this method prints the list on the standard output.

Provide a main containing an example of creating a list, printing it and deleting
some of its values.

b) append this method appends two lists given as arguments such that the first cell
of the second list is linked to the last cell of the first list.

insert this method inserts a given integer value into the list such that the list is
always ordered with increasing values.

Update your main to demonstrate these functions.

6

