Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Francois Scharffe and Sarah Winkler
29. April 2008

Proseminar Algorithmen und Datenstrukturen Exercise sheet 6

Exercise 1 (O Notation)

Compare the following pairs of functions in terms of order of magnitude. In each case, say whether $f(n) \in O(g(n)), f(n) \in \Omega(g(n))$ and/or $f(n) \in \Theta(g(n))$.

$$
f(n) \quad g(n)
$$

a) $\quad n^{3}+3 n+1 \quad n^{4}$
b) $\quad \log (n) \quad n$
c) $\quad n \cdot 2^{n} \quad 3^{n}$
d) $\begin{array}{cc}n & (\log (n))^{5}\end{array}$
e) $\quad \log (n) \quad \log \left(n^{2}\right)$
f) $\quad 100 n+\log (n) \quad n+(\log (n))^{2}$

In order to show that $f(n) \in O(g(n))$ we have to find two constants c and N such that for all $n>N$ we have that $f(n) \leq c \cdot g(n)$. Formally,

$$
\begin{equation*}
f(n) \in O(g(n)) \Longleftrightarrow \exists c>0 \exists N \forall n>N \quad f(n) \leq c \cdot g(n) \tag{1}
\end{equation*}
$$

Moreover, $f(n) \in \Omega(g(n))$ if and only if $g(n) \in O(f(n))$, and $f(n) \in \Theta(g(n))$ if and only if $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$.
a) $n^{3}+3 n+1$ is in $O\left(n^{4}\right)$. Setting $c=1$ and $N=1$, we have to show that $n^{3}+3 n+1 \leq$ n^{4} for all $n \geq 2$. A simple proof by induction on n will suffice.

$$
n=22^{3}+3 * 2+1=15 \leq 16=2^{4}
$$

$n>2$ The induction hypothesis (IH) is: $n^{3}+3 n+1 \leq n^{4}$, and we must show that $(n+1)^{3}+3(n+1)+1 \leq(n+1)^{4}$.
$(n+1)^{3}+3(n+1)+1=n^{3}+3 n^{2}+3 n+1+3 n+3+1=\left(n^{3}+3 n+1\right)+3 n^{2}+3 n+4$.
By the IH we get that $\left(n^{3}+3 n+1\right)+3 n^{2}+3 n+4 \leq n^{4}+3 n^{2}+3 n+4$, and it remains to show that this is smaller than or equal to $(n+1)^{4}$. But this is easy:

$$
\begin{aligned}
n^{4}+3 n^{2}+3 n+4 & \leq(n+1)^{4} \\
n^{4}+3 n^{2}+3 n+4 & \leq n^{4}+4 n^{3}+6 n^{2}+4 n+1 \\
3 & \leq 4 n^{3}+3 n^{2}+n
\end{aligned}
$$

And this last inequality is trivially satisfied for $n>2$.
Alternatively, we can use the following reasoning to establish that $n^{3}+3 n+1$ is in $O\left(n^{4}\right)$.

$$
\begin{aligned}
n^{3}+3 n+1 & \leq 3 n^{3}+3 n+3 \quad \text { for } n \geq 1 \\
& \leq 3 n^{3}+3 n^{3}+3 n^{3} \\
& \leq 9 n^{3} \\
& \leq 9 n^{4}
\end{aligned}
$$

Note that this proof also yields that $n^{3}+3 n+1$ is in $O\left(n^{3}\right)$. Finally, for the ones who are familiar with computing with limits, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$ (i.e., the limit exists) implies condition (11). Hence,

$$
\lim _{n \rightarrow \infty} \frac{n^{3}+3 n+1}{n^{4}}=\lim _{n \rightarrow \infty} \frac{1}{n}+3 \frac{1}{n^{3}}+\frac{1}{n^{4}}=0
$$

also tells us that $n^{3}+3 n+1$ is in $O\left(n^{4}\right)$.
Clearly, n^{4} is not in $O\left(n^{3}+3 n+1\right)$. The proof goes by contradiction. So assume that there exist constants c and N such that for all $n>N$ we have $n^{4} \leq c\left(n^{3}+3 n+1\right)$. This means that

$$
c \geq \frac{n^{4}}{n^{3}+3 n+1} \geq \frac{n^{4}}{3 n^{3}+3 n+3} \geq \frac{n^{4}}{9 n^{3}}=\frac{n}{9}
$$

Hence, $c \geq \frac{n}{9}$ for all $n>N$. Obviously such a constant c does not exist. As a consequence of the results obtained above, $n^{3}+3 n+1$ is not in $\Theta\left(n^{4}\right)$.
b) For $n>0$ we have $\log (n) \leq n$ if and only if $e^{\log (n)} \leq e^{n}$, which simplifies to $n \leq e^{n}$ (remember that the exponential function is monotonically increasing). Establishing $n \leq e^{n}$ for $n>0$ is a trivial task if we consider the power series representation of the exponential function:

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\ldots
$$

Hence, $\log (n)$ is in $O(n)$. Reasoning with limits we obtain the same result somewhat faster

$$
\lim _{n \rightarrow \infty} \frac{\log (n)}{n}=\lim _{n \rightarrow \infty} \frac{1 / n}{1}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

by an application of de L'Hopital's rule for calculating limits.
However, n is not in $O(\log (n))$. Again the proof goes by contradiction. So assume that there exist constants c and N such that for all $n>N$ we have $n \leq c \cdot \log (n)$. This means that $c \geq n / \log (n)$, which implies that

$$
e^{c} \geq e^{\frac{n}{\log (n)}}=e^{\frac{n \log (n)}{(\log (n))^{2}}}=n^{\frac{n}{(\log (n))^{2}}} \geq n
$$

(note that $n \geq(\log (n))^{2}$ for $n \geq 1$, a fact which we will prove later). Hence, $e^{c} \geq n$ for all $n>N$. Obviously such a constant c does not exist.

As a consequence of the results obtained above, $\log (n)$ is not in $\Theta(n)$.
c)

$$
\lim _{n \rightarrow \infty} \frac{n \cdot 2^{n}}{3^{n}}=\lim _{n \rightarrow \infty} \frac{n}{\left(\frac{3}{2}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{3}{2}\right)^{n} \cdot \log \left(\frac{3}{2}\right)}=0
$$

Hence, $n \cdot 2^{n}$ is in $O\left(3^{n}\right)$.
However, 3^{n} is not in $O\left(n \cdot 2^{n}\right)$ as a simple proof by contradiction shows.
As a consequence of the results obtained above, $n \cdot 2^{n}$ is not in $\Theta\left(3^{n}\right)$.
d) $\log (n))^{5}$ is in $O(n)$. It is even true that $(\log (n))^{r}$ is in $O(n)$ for every natural number $r \geq 1$.

Proof. So we have to find constants $c>0$ and N such that $(\log (n))^{r} \leq c \cdot n$ for all $n>N$. The logarithm of n is non-negative for $n \geq 1$ and therefore $(\log (n))^{r} \leq c \cdot n$ is equivalent to $\log (n) \leq \sqrt[r]{c \cdot n}$. Now we conclude

$$
\log (n) \leq \sqrt[r]{c \cdot n} \Longleftrightarrow e^{\log (n)} \leq e^{\sqrt[r]{c \cdot n}} \Longleftrightarrow n \leq e^{\sqrt[r]{c \cdot n}} \Longleftrightarrow \frac{e^{\sqrt[r]{c \cdot n}}}{n} \geq 1
$$

Next we use the power series representation of the exponential function to simplify $\frac{e^{\sqrt[r]{c} \cdot n}}{n}$.

$$
\frac{e^{\sqrt[r]{c \cdot n}}}{n}=\frac{\sum_{k=0}^{\infty} \frac{(\sqrt[r]{c \cdot n})^{k}}{k!}}{n}=\frac{\sum_{k=0}^{\infty} \frac{(c \cdot n)^{\frac{k}{r}}}{k!}}{n}=\sum_{k=0}^{\infty} \frac{c^{\frac{k}{r}} n^{\frac{k}{r}-1}}{k!}
$$

Remember that we want to find constants $c>0$ and N such that this sum becomes 1 or greater for all $n>N$. Analyzing the structure of the sum, we see that all summands are non-negative. Hence, if only one of the summands is equal to 1 or greater then the whole sum is, too. Moreover, considering the summand for $k=r$

$$
\frac{c^{\frac{r}{r}} n^{\frac{r}{r}-1}}{r!}=\frac{c n^{0}}{r!}=\frac{c}{r!}
$$

we see that it is independent of n (which is very good!). So, if we set c to the faculty of r then the entire sum becomes 1 or greater, and $(\log (n))^{r} \leq r!\cdot n$ for all $n \geq 1$.

However, n is not in $O\left((\log (n))^{r}\right)$ as a proof by contradiction similar to the one used in b) shows.
As a consequence of the results obtained above, n is not in $\Theta\left((\log (n))^{r}\right)$.
e) Note that $\log \left(n^{2}\right)=2 \cdot \log (n)$. Hence, $\log (n)$ is in $O\left(\log \left(n^{2}\right)\right)$ and $\log \left(n^{2}\right)$ in $O(\log (n))$, which implies that $\log (n)$ is in $\Theta\left(\log \left(n^{2}\right)\right)$.
f)
$\lim _{n \rightarrow \infty} \frac{100 n+\log (n)}{n+(\log (n))^{2}}=\lim _{n \rightarrow \infty} \frac{100+\frac{1}{n}}{1+2(\log (n)) \frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{100 n+1}{n+2(\log (n))}=\lim _{n \rightarrow \infty} \frac{100}{1+2 \frac{1}{n}}=100$
Hence, $100 n+\log (n)$ is in $O\left(n+(\log (n))^{2}\right)$. The same calculation (with nominator and denominator exchanged) tells us that $n+(\log (n))^{2}$ is in $O(100 n+\log (n))$. Together this implies that $100 n+\log (n)$ is in $\Theta\left(n+(\log (n))^{2}\right)$.

Exercise 2 (O Notation)

The addition theorem for O states that $f(n) \in O(s(n))$ and $g(n) \in O(r(n))$ imply that $f(n)+g(n) \in O(s(n)+r(n))$. Now formulate the corresponding theorem for Ω and provide a proof for it.

Claim: $f(n) \in \Omega(s(n))$ and $g(n) \in \Omega(r(n))$ imply that $f(n)+g(n) \in \Omega(s(n)+r(n))$.
Proof. Let's assume that $f(n) \in \Omega(s(n))$ and $g(n) \in \Omega(r(n))$. By definition of Ω, we have

$$
\begin{array}{ll}
\exists c_{1}>0 \exists N_{1} \forall n>N_{1} & f(n) \geq c_{1} \cdot s(n) \\
\exists c_{2}>0 \exists N_{2} \forall n>N_{2} & g(n) \geq c_{2} \cdot r(n)
\end{array}
$$

Hence, $f(n)+g(n) \geq c_{1} \cdot s(n)+c_{2} \cdot r(n) \geq \min (c 1, c 2) \cdot(s(n)+r(n))$. Now we can prove that $\exists c>0 \exists N \forall n>N \quad f(n)+g(n) \geq c \cdot(s(n)+r(n))$ by setting N to $\max \left(N_{1}, N_{2}\right)$ and c to $\min \left(c_{1}, c_{2}\right)$.

Exercise 3 (O Notation)

a) Find a counterexample to the following claim: $f(n) \in O(s(n))$ and $g(n) \in O(r(n))$ imply that $f(n)-g(n) \in O(s(n)-r(n))$.
b) Find a counterexample to the following claim: $f(n) \in O(s(n))$ and $g(n) \in O(r(n))$ imply that $f(n) / g(n) \in O(s(n) / r(n))$.
a) Let $f(n)=2 n \in O(n)$ and $g(n)=n \in O(n)$.
b) Let $f(n)=n \in O(n)$ and $g(n)=1 / n \in O(1)$.

Exercise 4 (O Notation)

Prove or disprove (by means of a counterexample) the following statements:
a) $O(f(n)+g(n))=O(\max (f(n), g(n)))$
b) $O(f(n)+g(n))=O(\min (f(n), g(n)))$
c) $\Omega(f(n)+g(n))=\Omega(\max (f(n), g(n)))$
d) $\Omega(f(n)+g(n))=\Omega(\min (f(n), g(n)))$
e) $\Theta(f(n)+g(n))=\Theta(\max (f(n), g(n)))$
f) $\Theta(f(n)+g(n))=\Theta(\min (f(n), g(n)))$

First, we prove a simple theorem concerning O notation. For every constant $k>0$ and $f: \mathbb{N}_{0} \rightarrow \mathbb{R}_{0}^{+}$, we have

$$
O(k \cdot f(n))=O(f(n))
$$

Proof. For all functions $g: \mathbb{N}_{0} \rightarrow \mathbb{R}_{0}^{+}$we have

$$
\begin{aligned}
& g \in O(k \cdot f(n)) \Longleftrightarrow \exists c>0 \exists N \forall n>N \quad g(n) \leq c \cdot(k \cdot f(n)) \\
& \Longleftrightarrow \exists c>0 \exists N \forall n>N \quad g(n) \leq(c \cdot k) \cdot f(n) \\
& \Longleftrightarrow \quad \exists c^{\prime}>0 \exists N \forall n>N \quad g(n) \leq c^{\prime} \cdot f(n) \\
& g \in O(f(n))
\end{aligned}
$$

a) $O(f(n)+g(n))=O(\max (f(n), g(n)))$ is true. If f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}then the following inequalities hold for all n :

$$
\max (f(n), g(n)) \leq f(n)+g(n) \leq 2 \cdot \max (f(n), g(n))
$$

From the first inequality we conclude that $O(\max (f(n), g(n))) \subseteq O(f(n)+g(n))$, since any function that is bounded by $\max (f, g)$ is also bounded by $f+g$.
Likewise, we conclude from the second inequality that $O(f(n)+g(n)) \subseteq O(2$. $\max (f(n), g(n)))$. But by the above theorem $O(2 \cdot \max (f(n), g(n)))=O(\max (f(n), g(n)))$, and hence $O(f(n)+g(n)) \subseteq O(\max (f(n), g(n)))$.
b) $O(f(n)+g(n))=O(\min (f(n), g(n)))$ is false. For example, let $f(n)=n$ and $g(n)=n^{2}$. Then $O(f(n)+g(n))=O\left(n+n^{2}\right)$ which is equal to $O\left(n^{2}\right)$ by a), whereas $O(\min (f(n), g(n)))=O(n)$.
c) $\Omega(f(n)+g(n))=\Omega(\max (f(n), g(n)))$ is true by similar reasoning as in a). If f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}then the following inequalities hold for all n :

$$
\max (f(n), g(n)) \leq f(n)+g(n) \leq 2 \cdot \max (f(n), g(n))
$$

From the first inequality we conclude that $\Omega(f(n)+g(n)) \subseteq \Omega(\max (f(n), g(n)))$, since any function that is bounded from below by $f+g$ is also bounded by $\max (f, g)$.
Likewise, we conclude from the second inequality that $\Omega(2 \cdot \max (f(n), g(n))) \subseteq$ $\Omega(f(n)+g(n))$. But $\Omega(2 \cdot \max (f(n), g(n)))=\Omega(\max (f(n), g(n)))$, and hence $\Omega(\max (f(n), g(n))) \subseteq \Omega(f(n)+g(n))$.
d) $\Omega(f(n)+g(n))=\Omega(\min (f(n), g(n)))$ is false by similar reasoning as in b).
e) $\Theta(f(n)+g(n))=\Theta(\max (f(n), g(n)))$ is true. By definition of Θ, we have $h \in$ $\Theta(f(n)+g(n))$ if and only if $h \in O(f(n)+g(n))$ and $h \in \Omega(f(n)+g(n))$. According to a) and c) this is equivalent to $h \in O(\max (f(n), g(n)))$ and $h \in$ $\Omega(\max (f(n), g(n)))$, which is equivalent to $h \in \Theta(\max (f(n), g(n)))$.
f) $\Theta(f(n)+g(n))=\Theta(\min (f(n), g(n)))$ is false by similar reasoning as in b).

Exercise 5 (O Notation)

Assuming that the bodies of the for-loops only contain simple statements (no loops, no function calls etc.), and hence have constant time complexity, what is the time complexity of each of the following code fragments?

c)

```
for (i = 0; i < N; i++) {
    for (j = i ; j < N; j++) {
    }
}
```

d) Consider this sample implementation for the longest upsequence algorithm (exercise 4 on exercise sheet 3). What is its complexity expressed in O notation? Consider both cases, binary and naive linear search.

```
#include <stdio.h>
```

```
int main() {
    int n = 8; /* array length */
    int X[] = {1, 3, 4, 6, 2, 4, 4, 0};
    int M[n]; for (int i=0; i<n; i++)M[i]=0;
    int i;
    int k = 0;
    M[0] = X[0];
    for(i = 1; i < n; i++){
        if (X[i] >= M[k]) {
            k++;
            M[k] = X[i ];
                }
            else if (X[i] < M[0]) {
                M[0] = X[i];
                }
        else {
            /* find j such that M[j-1] <=X[i]<M[j] */
            /* Possibility 1: naive search
            int j = i;
            while (M[j-1] > X[i])
                j--; */
            /* Possibility 2: binary search */
            int b, j = 1;
            for (b = (k+1)/2; M[j-1] > X[i] || X[i] >= M[j]; b /= 2)
                if (M[j-1] > X[i])
                    j -= b;
                else
                    j += b;
            M[j] = X[i];
        }
    }
```

```
    printf("Longestьupsequence^has_length &%d\n", k + 1);
    return 0;
}
```

a) The first loop is $O(N)$ and the second loop is $O(M)$. Since we don't know which one is bigger, we say this is $O(N+M)$, or equivalently $O(\max (N, M))$. In the case where the second loop goes to N instead of M the complexity is $O(N)$. You can see this from either expression above. $O(N+M)$ becomes $O(2 N)$, and when you drop the constant it is $O(N) . O(\max (N, M))$ becomes $O(\max (N, N))$ which is $O(N)$.
b) The first set of nested loops is $O\left(N^{2}\right)$ and the second loop is $O(N)$. Hence, the overall complexity is $O\left(\max \left(N^{2}, N\right)\right)$, which is $O\left(N^{2}\right)$.
c) When i is 0 , the inner loop executes N times. When i is 1 , the inner loop executes $N-1$ times. In the last iteration of the outer loop, when i is $N-1$, the inner loop executes exactly once. Hence, the number of times the body of the inner loop executes is $N+(N-1)+\ldots+2+1=\sum_{i=1}^{N} i=N(N+1) / 2$, which amounts to $O\left(N^{2}\right)$.
d) The for-loop executes $n-1$ times, where n is the length of the input sequence. Most of the body of the for-loop is made up of basic statements that execute in constant time (i.e., the execution time does not depend on n), only the part where we search for a position to place the current element depends on n. Hence, (in the worst case) the complexity of the body of the for-loop is the complexity of the search algorithm we use.
In case of linear search, the iteration count of the while-loop is determined by the variable j which is initialized to the value of i, the loop index of the main loop. In the worst case j is $n-1$. Consequently, the complexity of the search is $O(n)$.

In case of binary search, the iteration count of the for-loop is determined by the variable b, which is initialized to $(k+1) / 2$. In the worst case b is $n / 2$. Hence, the complexity of the search is $O(\log n)$.
Thus the total complexity is $O\left(n^{2}\right)$ using linear search and $O(n \cdot \log n)$ in case of binary search.

Exercise 6 (Linked List)

Reconsider your linked list implementation of last week, try to eliminate the bugs it has (if it has any) and provide a demo program that is equipped with a user interface. The user interface should consist of a menu that has entries for

- adding elements to a list,
- removing elements from a list,
- printing a list,
- inserting elements in order and
- searching for a specific element.

The main program main.c:

```
#include <stdio.h>
#include <string.h>
#include "list.h"
void printMenu()
{
    fprintf(stdout,"\n***」List^Menu^************************** n" );
```



```
    fprintf(stdout, "******************************************\n");
    fprintf(stdout,"\n");
}
char chooseCmd()
{
    char c = '\0';
    char* s = NULL;
    do
    {
            fprintf(stdout, "Makeьyourьselection:^");
            c = getchar();
            //flush stdin: note fflush has undefined behaviour for input streams
            while (getchar() != '\n') ;
    } while ( !(s = strchr ("arpsq",c)) );
    fprintf(stdout, "\n");
    return *s;
}
//read an integer from stdin, using the string s as prompt
int readInt(const char *s)
{
    int i = 0, ret = 0;
    do
    {
        if (s)
```

```
            printf("%s", s);
        ret = scanf("%d",&i})
        //flush stdin: note fflush has undefined behaviour for input streams
        while (getchar() != '\n') ;
    } while (ret != 1);
    return i;
}
int main()
{
    list_t* list = NULL; //empty list
    int stop = 0;;
    while (!stop)
    {
        printMenu();
        switch ((unsigned int) chooseCmd())
        {
            case 'a':
                list = addElement(list,
```



```
            );
                break;
            case 'r':
                list = removeElement(list,
```



```
                );
                break;
            case 'p':
                printList(list);
                break;
            case 's':
            {
                int res = searchList(list,
```



```
                );
```



```
                    break;
                }
            case 'q':
                stop = 1;
                break;
            default:
```

```
                break;
            }
    }
    //free the memory occupied by the list nodes
    deleteList(list);
    return 0;
}
The list interface file list.h:
```

```
#ifndef LIST_H
```

\#ifndef LIST_H
\#define LIST_H
\#define LIST_H
typedef struct list
{
int data;
struct list* next;
} list_t;
list_t* addElement(list_t* list, int x);
void printList(const list_t* list);
void deleteList(list_t* list);
int searchList(const list_t* list, int x);
list_t* removeHead(list_t* list);
list_t* removeElement(list_t* const list, int x);
\#endif

```

The list implementation file list.c:
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <assert.h>
\#include "list.h"
list_t* addElement(list_t* list, int x)
{
list_t* p = (list_t*) malloc(sizeof(list_t));
if (p)
{
p}->\mathrm{ data = x;

```
```

 p}->\mathrm{ -next = list;
 }
 return p;
 }
void printList(const list_t* list)
{
fprintf(stdout, "[");
while (list)
{
fprintf(stdout, "%d", list }->>\mathrm{ data);
if (list }->\mathrm{ -next)
fprintf(stdout, ";");
list = list }->\mathrm{ -next;
}
fprintf(stdout, "]\n");
}
void deleteList(list_t* list)
{
while (list)
{
list_t* p = list }->\mathrm{ next;
free(list);
list = p;
}
}
int searchList(const list_t* list, int x)
{
while (list)
{
if (list }->\mathrm{ data = x)
return 1;
list = list }->\mathrm{ next;
}
return 0;
}
list_t* removeHead(list_t* list)
{
list_t* p = NULL;
if (list)

```
```

 {
 p = list -> next;
 free(list);
 }
 return p;
 }
list_t* removeElement(list_t* const list, int x)
{
if (!list)
return NULL;
if (list->data= x)
return removeHead(list);
list_t* prev = list;
list_t* p = list }->\mathrm{ next;
while (p)
{
if (p->data = x)
{
assert(prev != NULL);
prev->next = p->next;
free(p);
return list;
}
else
{
prev = p;
p = p->next;
}
}
return list;
}

```
```

