
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe and Sarah Winkler

29. April 2008

Proseminar Algorithmen und Datenstrukturen

Exercise sheet 6

Exercise 1 (O Notation)

Compare the following pairs of functions in terms of order of magnitude. In each case,
say whether f(n) ∈ O(g(n)), f(n) ∈ Ω(g(n)) and/or f(n) ∈ Θ(g(n)).

f(n) g(n)

a) n3 + 3n + 1 n4

b) log(n) n
c) n · 2n 3n

d) n (log(n))5

e) log(n) log(n2)
f) 100n + log(n) n + (log(n))2

In order to show that f(n) ∈ O(g(n)) we have to find two constants c and N such
that for all n > N we have that f(n) ≤ c · g(n). Formally,

f(n) ∈ O(g(n)) ⇐⇒ ∃c > 0 ∃N ∀n > N f(n) ≤ c · g(n) (1)

Moreover, f(n) ∈ Ω(g(n)) if and only if g(n) ∈ O(f(n)), and f(n) ∈ Θ(g(n)) if and only
if f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).

a) n3+3n+1 is in O(n4). Setting c = 1 and N = 1, we have to show that n3+3n+1 ≤
n4 for all n ≥ 2. A simple proof by induction on n will suffice.

n = 2 23 + 3 ∗ 2 + 1 = 15 ≤ 16 = 24

1

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

n > 2 The induction hypothesis (IH) is: n3 + 3n + 1 ≤ n4, and we must show
that (n + 1)3 + 3(n + 1) + 1 ≤ (n + 1)4.
(n+1)3+3(n+1)+1 = n3+3n2+3n+1+3n+3+1 = (n3+3n+1)+3n2+3n+4.
By the IH we get that (n3 + 3n + 1) + 3n2 + 3n + 4 ≤ n4 + 3n2 + 3n + 4, and
it remains to show that this is smaller than or equal to (n + 1)4. But this is
easy:

n4 + 3n2 + 3n + 4 ≤ (n + 1)4

n4 + 3n2 + 3n + 4 ≤ n4 + 4n3 + 6n2 + 4n + 1

3 ≤ 4n3 + 3n2 + n

And this last inequality is trivially satisfied for n > 2.

Alternatively, we can use the following reasoning to establish that n3 + 3n + 1 is
in O(n4).

n3 + 3n + 1 ≤ 3n3 + 3n + 3 for n ≥ 1

≤ 3n3 + 3n3 + 3n3

≤ 9n3

≤ 9n4

Note that this proof also yields that n3 + 3n + 1 is in O(n3). Finally, for the ones

who are familiar with computing with limits, limn→∞
f(n)
g(n) < ∞ (i.e., the limit

exists) implies condition (1). Hence,

lim
n→∞

n3 + 3n + 1

n4
= lim

n→∞

1

n
+ 3

1

n3
+

1

n4
= 0

also tells us that n3 + 3n + 1 is in O(n4).

Clearly, n4 is not in O(n3+3n+1). The proof goes by contradiction. So assume that
there exist constants c and N such that for all n > N we have n4 ≤ c(n3 +3n+1).
This means that

c ≥ n4

n3 + 3n + 1
≥ n4

3n3 + 3n + 3
≥ n4

9n3
=

n

9

Hence, c ≥ n
9 for all n > N . Obviously such a constant c does not exist.

As a consequence of the results obtained above, n3 + 3n + 1 is not in Θ(n4).

b) For n > 0 we have log(n) ≤ n if and only if elog(n) ≤ en, which simplifies to n ≤ en

(remember that the exponential function is monotonically increasing). Establishing
n ≤ en for n > 0 is a trivial task if we consider the power series representation of
the exponential function:

ex =
∞∑

k=0

xk

k!
= 1 + x +

x2

2!
+ . . .

2

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

Hence, log(n) is in O(n). Reasoning with limits we obtain the same result somewhat
faster

lim
n→∞

log(n)

n
= lim

n→∞

1/n

1
= lim

n→∞

1

n
= 0

by an application of de L’Hopital’s rule for calculating limits.

However, n is not in O(log(n)). Again the proof goes by contradiction. So assume
that there exist constants c and N such that for all n > N we have n ≤ c · log(n).
This means that c ≥ n/ log(n), which implies that

ec ≥ e
n

log(n) = e
n log(n)

(log(n))2 = n
n

(log(n))2 ≥ n

(note that n ≥ (log(n))2 for n ≥ 1, a fact which we will prove later). Hence, ec ≥ n
for all n > N . Obviously such a constant c does not exist.

As a consequence of the results obtained above, log(n) is not in Θ(n).

c)

lim
n→∞

n · 2n

3n
= lim

n→∞

n

(3
2)n

= lim
n→∞

1

(3
2)n · log(3

2)
= 0

Hence, n · 2n is in O(3n).

However, 3n is not in O(n · 2n) as a simple proof by contradiction shows.

As a consequence of the results obtained above, n · 2n is not in Θ(3n).

d) log(n))5 is in O(n). It is even true that (log(n))r is in O(n) for every natural
number r ≥ 1.

Proof. So we have to find constants c > 0 and N such that (log(n))r ≤ c · n for all
n > N . The logarithm of n is non-negative for n ≥ 1 and therefore (log(n))r ≤ c ·n
is equivalent to log(n) ≤ r

√
c · n. Now we conclude

log(n) ≤ r
√

c · n ⇐⇒ elog(n) ≤ e
r
√

c·n ⇐⇒ n ≤ e
r
√

c·n ⇐⇒ e
r
√

c·n

n
≥ 1

Next we use the power series representation of the exponential function to simplify
e

r
√

c·n

n
.

e
r
√

c·n

n
=

∑∞
k=0

(r
√

c·n)k

k!

n
=

∑∞
k=0

(c·n)
k
r

k!

n
=

∞∑

k=0

c
k

r n
k

r
−1

k!

Remember that we want to find constants c > 0 and N such that this sum becomes
1 or greater for all n > N . Analyzing the structure of the sum, we see that all
summands are non-negative. Hence, if only one of the summands is equal to 1 or
greater then the whole sum is, too. Moreover, considering the summand for k = r

c
r

r n
r

r
−1

r!
=

cn0

r!
=

c

r!

3

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

we see that it is independent of n (which is very good!). So, if we set c to the
faculty of r then the entire sum becomes 1 or greater, and (log(n))r ≤ r! · n for all
n ≥ 1.

However, n is not in O((log(n))r) as a proof by contradiction similar to the one
used in b) shows.

As a consequence of the results obtained above, n is not in Θ((log(n))r).

e) Note that log(n2) = 2 · log(n). Hence, log(n) is in O(log(n2)) and log(n2) in
O(log(n)), which implies that log(n) is in Θ(log(n2)).

f)

lim
n→∞

100n + log(n)

n + (log(n))2
= lim

n→∞

100 + 1
n

1 + 2(log(n)) 1
n

= lim
n→∞

100n + 1

n + 2(log(n))
= lim

n→∞

100

1 + 2 1
n

= 100

Hence, 100n+log(n) is in O(n+(log(n))2). The same calculation (with nominator
and denominator exchanged) tells us that n + (log(n))2 is in O(100n + log(n)).
Together this implies that 100n + log(n) is in Θ(n + (log(n))2).

Exercise 2 (O Notation)

The addition theorem for O states that f(n) ∈ O(s(n)) and g(n) ∈ O(r(n)) imply that
f(n) + g(n) ∈ O(s(n) + r(n)). Now formulate the corresponding theorem for Ω and
provide a proof for it.

Claim: f(n) ∈ Ω(s(n)) and g(n) ∈ Ω(r(n)) imply that f(n) + g(n) ∈ Ω(s(n) + r(n)).

Proof. Let’s assume that f(n) ∈ Ω(s(n)) and g(n) ∈ Ω(r(n)). By definition of Ω, we
have

∃c1 > 0 ∃N1 ∀n > N1 f(n) ≥ c1 · s(n)

∃c2 > 0 ∃N2 ∀n > N2 g(n) ≥ c2 · r(n)

Hence, f(n)+ g(n) ≥ c1 · s(n) + c2 · r(n) ≥ min(c1, c2) · (s(n) + r(n)). Now we can prove
that ∃c > 0 ∃N ∀n > N f(n) + g(n) ≥ c · (s(n) + r(n)) by setting N to max(N1,N2)
and c to min(c1, c2).

Exercise 3 (O Notation)

a) Find a counterexample to the following claim: f(n) ∈ O(s(n)) and g(n) ∈ O(r(n))
imply that f(n) − g(n) ∈ O(s(n) − r(n)).

b) Find a counterexample to the following claim: f(n) ∈ O(s(n)) and g(n) ∈ O(r(n))
imply that f(n)/g(n) ∈ O(s(n)/r(n)).

4

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

a) Let f(n) = 2n ∈ O(n) and g(n) = n ∈ O(n).

b) Let f(n) = n ∈ O(n) and g(n) = 1/n ∈ O(1).

Exercise 4 (O Notation)

Prove or disprove (by means of a counterexample) the following statements:

a) O(f(n) + g(n)) = O(max(f(n), g(n)))

b) O(f(n) + g(n)) = O(min(f(n), g(n)))

c) Ω(f(n) + g(n)) = Ω(max(f(n), g(n)))

d) Ω(f(n) + g(n)) = Ω(min(f(n), g(n)))

e) Θ(f(n) + g(n)) = Θ(max(f(n), g(n)))

f) Θ(f(n) + g(n)) = Θ(min(f(n), g(n)))

First, we prove a simple theorem concerning O notation. For every constant k > 0
and f : N0 → R

+
0 , we have

O(k · f(n)) = O(f(n))

Proof. For all functions g : N0 → R
+
0 we have

g ∈ O(k · f(n)) ⇐⇒ ∃c > 0 ∃N ∀n > N g(n) ≤ c · (k · f(n))

⇐⇒ ∃c > 0 ∃N ∀n > N g(n) ≤ (c · k) · f(n)

⇐⇒ ∃c′ > 0 ∃N ∀n > N g(n) ≤ c′ · f(n)

g ∈ O(f(n))

a) O(f(n) + g(n)) = O(max(f(n), g(n))) is true. If f and g are functions from N0 to
R

+
0 then the following inequalities hold for all n:

max(f(n), g(n)) ≤ f(n) + g(n) ≤ 2 · max(f(n), g(n))

From the first inequality we conclude that O(max(f(n), g(n))) ⊆ O(f(n) + g(n)),
since any function that is bounded by max(f, g) is also bounded by f + g.

Likewise, we conclude from the second inequality that O(f(n) + g(n)) ⊆ O(2 ·
max(f(n), g(n))). But by the above theorem O(2·max(f(n), g(n))) = O(max(f(n), g(n))),
and hence O(f(n) + g(n)) ⊆ O(max(f(n), g(n))).

b) O(f(n) + g(n)) = O(min(f(n), g(n))) is false. For example, let f(n) = n and
g(n) = n2. Then O(f(n) + g(n)) = O(n + n2) which is equal to O(n2) by a),
whereas O(min(f(n), g(n))) = O(n).

5

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

c) Ω(f(n)+g(n)) = Ω(max(f(n), g(n))) is true by similar reasoning as in a). If f and
g are functions from N0 to R

+
0 then the following inequalities hold for all n:

max(f(n), g(n)) ≤ f(n) + g(n) ≤ 2 · max(f(n), g(n))

From the first inequality we conclude that Ω(f(n) + g(n)) ⊆ Ω(max(f(n), g(n))),
since any function that is bounded from below by f+g is also bounded by max(f, g).

Likewise, we conclude from the second inequality that Ω(2 · max(f(n), g(n))) ⊆
Ω(f(n) + g(n)). But Ω(2 · max(f(n), g(n))) = Ω(max(f(n), g(n))), and hence
Ω(max(f(n), g(n))) ⊆ Ω(f(n) + g(n)).

d) Ω(f(n) + g(n)) = Ω(min(f(n), g(n))) is false by similar reasoning as in b).

e) Θ(f(n) + g(n)) = Θ(max(f(n), g(n))) is true. By definition of Θ, we have h ∈
Θ(f(n) + g(n)) if and only if h ∈ O(f(n) + g(n)) and h ∈ Ω(f(n) + g(n)).
According to a) and c) this is equivalent to h ∈ O(max(f(n), g(n))) and h ∈
Ω(max(f(n), g(n))), which is equivalent to h ∈ Θ(max(f(n), g(n))).

f) Θ(f(n) + g(n)) = Θ(min(f(n), g(n))) is false by similar reasoning as in b).

Exercise 5 (O Notation)

Assuming that the bodies of the for-loops only contain simple statements (no loops, no
function calls etc.), and hence have constant time complexity, what is the time complexity
of each of the following code fragments?

a) for (i = 0 ; i < N; i++) {
. . .

}
for (j = 0 ; j < M; j++) {

. . .
}

b) for (i = 0 ; i < N; i++) {
for (j = 0 ; j < N; j++) {

. . .
}

}
for (k = 0 ; k < N; k++) {

. . .
}

6

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

c) for (i = 0 ; i < N; i++) {
for (j = i ; j < N; j++) {

. . .
}

}

d) Consider this sample implementation for the longest upsequence algorithm (exerci-
se 4 on exercise sheet 3). What is its complexity expressed in O notation? Consider
both cases, binary and naive linear search.

#include <s td i o . h>

int main () {
int n = 8 ; /∗ array l eng t h ∗/
int X[] = {1 , 3 , 4 , 6 , 2 , 4 , 4 , 0} ;
int M[n] ; for (int i =0; i<n ; i++) M[i]=0;
int i ;

int k = 0 ;
M[0] = X[0] ;
for (i = 1 ; i < n ; i++){

i f (X[i] >= M[k]) {
k++;
M[k] = X[i] ;
}

else i f (X[i] < M[0]) {
M[0] = X[i] ;
}

else {
/∗ f i nd j such t ha t M[j −1] <=X[i]<M[j] ∗/
/∗ P o s s i b i l i t y 1 : naive search
i n t j = i ;
wh i l e (M[j −1] > X[i])

j−−; ∗/
/∗ P o s s i b i l i t y 2 : b inary search ∗/
int b , j = 1 ;
for (b = (k+1)/2; M[j −1] > X[i] | | X[i] >= M[j] ; b /= 2)

i f (M[j −1] > X[i])
j −= b ;

else

j += b ;
M[j] = X[i] ;

}
}

7

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

p r i n t f (”Longest upsequence has length %d\n” , k + 1) ;
return 0 ;

}

a) The first loop is O(N) and the second loop is O(M). Since we don’t know which
one is bigger, we say this is O(N +M), or equivalently O(max(N,M)). In the case
where the second loop goes to N instead of M the complexity is O(N). You can see
this from either expression above. O(N +M) becomes O(2N), and when you drop
the constant it is O(N). O(max(N,M)) becomes O(max(N,N)) which is O(N).

b) The first set of nested loops is O(N2) and the second loop is O(N). Hence, the
overall complexity is O(max(N2,N)), which is O(N2).

c) When i is 0, the inner loop executes N times. When i is 1, the inner loop executes
N − 1 times. In the last iteration of the outer loop, when i is N − 1, the inner
loop executes exactly once. Hence, the number of times the body of the inner loop
executes is N + (N − 1) + ... + 2 + 1 =

∑N
i=1 i = N(N + 1)/2, which amounts to

O(N2).

d) The for-loop executes n − 1 times, where n is the length of the input sequence.
Most of the body of the for-loop is made up of basic statements that execute in
constant time (i.e., the execution time does not depend on n), only the part where
we search for a position to place the current element depends on n. Hence, (in the
worst case) the complexity of the body of the for-loop is the complexity of the
search algorithm we use.

In case of linear search, the iteration count of the while-loop is determined by the
variable j which is initialized to the value of i, the loop index of the main loop. In
the worst case j is n − 1. Consequently, the complexity of the search is O(n).

In case of binary search, the iteration count of the for-loop is determined by the
variable b, which is initialized to (k + 1)/2. In the worst case b is n/2. Hence, the
complexity of the search is O(log n).

Thus the total complexity is O(n2) using linear search and O(n · log n) in case of
binary search.

Exercise 6 (Linked List)

Reconsider your linked list implementation of last week, try to eliminate the bugs it has
(if it has any) and provide a demo program that is equipped with a user interface. The
user interface should consist of a menu that has entries for

• adding elements to a list,

• removing elements from a list,

• printing a list,

8

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

• inserting elements in order and

• searching for a specific element.

The main program main.c:

#include <s td i o . h>
#include <s t r i n g . h>
#include ” l i s t . h”

void printMenu ()
{

f p r i n t f (stdout , ”\n∗∗∗ L i s t Menu ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\ n”) ;
f p r i n t f (stdout , ”∗ [a] Add an element to the l i s t ∗\n”) ;
f p r i n t f (stdout , ”∗ [r] Remove an element from the l i s t ∗\n”) ;
f p r i n t f (stdout , ”∗ [p] Pr int the l i s t ∗\n”) ;
f p r i n t f (stdout , ”∗ [s] Search f o r an element ∗\n”) ;
f p r i n t f (stdout , ”∗ [q] Quit the program ∗\n”) ;
f p r i n t f (stdout , ”∗∗\ n”) ;
f p r i n t f (stdout , ”\n”) ;

}

char chooseCmd ()
{

char c = ’ \0 ’ ;
char∗ s = NULL;
do

{
f p r i n t f (stdout , ”Make your s e l e c t i o n : ”) ;
c = getchar () ;
// f l u s h s t d i n : note f f l u s h has unde f ined behav iour f o r input streams
while (getchar () != ’ \n ’) ;

} while (! (s = s t r ch r (” arpsq” , c))) ;
f p r i n t f (stdout , ”\n”) ;
return ∗ s ;

}

// read an i n t e g e r from stdin , us ing the s t r i n g s as prompt
int readInt (const char ∗ s)
{

int i = 0 , r e t = 0 ;

do

{
i f (s)

9

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

p r i n t f (”%s” , s) ;
r e t = scan f (”%d” , &i) ;
// f l u s h s t d i n : note f f l u s h has unde f ined behav iour f o r input streams
while (getchar () != ’ \n ’) ;

} while (r e t != 1) ;

return i ;
}

int main ()
{

l i s t t ∗ l i s t = NULL; //empty l i s t

int stop = 0 ; ;
while (! stop)
{

printMenu () ;
switch ((unsigned int) chooseCmd ())
{

case ’ a ’ :
l i s t = addElement (l i s t ,

r eadInt (”Enter an element to add to the l i s t : ”)
) ;
break ;

case ’ r ’ :
l i s t = removeElement (l i s t ,

r eadInt (”Enter an element to remove from the l i s t : ”)
) ;
break ;

case ’ p ’ :
p r i n tL i s t (l i s t) ;
break ;

case ’ s ’ :
{

int r e s = s ea r chL i s t (l i s t ,
r eadInt (”Enter an element to search f o r in the l i s t : ”)

) ;
p r i n t f (”\nThis element i s%s pr e s en t in the l i s t \n” , r e s ? ”” : ” not”
break ;

}
case ’ q ’ :

s top = 1 ;
break ;

default :

10

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

break ;
}

}
// f r e e the memory occupied by the l i s t nodes
d e l e t e L i s t (l i s t) ;
return 0 ;

}
The list interface file list.h:

#ifndef LIST H
#define LIST H

typedef struct l i s t
{

int data ;
struct l i s t ∗ next ;

} l i s t t ;

l i s t t ∗ addElement (l i s t t ∗ l i s t , int x) ;

void p r i n tL i s t (const l i s t t ∗ l i s t) ;

void d e l e t e L i s t (l i s t t ∗ l i s t) ;

int s e a r chL i s t (const l i s t t ∗ l i s t , int x) ;

l i s t t ∗ removeHead (l i s t t ∗ l i s t) ;

l i s t t ∗ removeElement (l i s t t ∗ const l i s t , int x) ;

#endif

The list implementation file list.c:

#include <s td i o . h>
#include <s t d l i b . h>
#include <a s s e r t . h>
#include ” l i s t . h”

l i s t t ∗ addElement (l i s t t ∗ l i s t , int x)
{

l i s t t ∗ p = (l i s t t ∗) mal loc (s izeof (l i s t t)) ;
i f (p)
{

p−>data = x ;

11

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

p−>next = l i s t ;
}
return p ;

}

void p r i n tL i s t (const l i s t t ∗ l i s t)
{

f p r i n t f (stdout , ” [”) ;
while (l i s t)
{

f p r i n t f (stdout , ”%d” , l i s t −>data) ;
i f (l i s t −>next)

f p r i n t f (stdout , ” ; ”) ;
l i s t = l i s t −>next ;

}
f p r i n t f (stdout , ”]\ n”) ;

}

void d e l e t e L i s t (l i s t t ∗ l i s t)
{

while (l i s t)
{

l i s t t ∗ p = l i s t −>next ;
f r e e (l i s t) ;
l i s t = p ;

}
}

int s e a r chL i s t (const l i s t t ∗ l i s t , int x)
{

while (l i s t)
{

i f (l i s t −>data == x)
return 1 ;

l i s t = l i s t −>next ;
}
return 0 ;

}

l i s t t ∗ removeHead (l i s t t ∗ l i s t)
{

l i s t t ∗ p = NULL;

i f (l i s t)

12

Proseminar Algorithmen und Datenstrukturen – Exercise sheet 6

{
p = l i s t −>next ;
f r e e (l i s t) ;

}
return p ;

}

l i s t t ∗ removeElement (l i s t t ∗ const l i s t , int x)
{

i f (! l i s t)
return NULL;

i f (l i s t −>data == x)
return removeHead (l i s t) ;

l i s t t ∗ prev = l i s t ;
l i s t t ∗ p = l i s t −>next ;

while (p)
{

i f (p−>data == x)
{

a s s e r t (prev != NULL) ;
prev−>next = p−>next ;
f r e e (p) ;
return l i s t ;

}
else

{
prev = p ;
p = p−>next ;

}
}
return l i s t ;

}

13

