
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe and Sarah Winkler

6 May 2008

Proseminar Algorithmen und Datenstrukturen

Exercise Sheet 7

Exercise 1 (Binary Search)

a) Write a function in C which performs binary search in a given array. Try to im-
plement the algorithm with a loop, as opposed to the recursive approach shown in
the lecture. Use the type short int for the array as well as for the variables left,
right and middle and compute the midpoint with the following commands:

middle = l e f t + r i gh t ;
middle = middle / 2 ;

b) Create a dynamic array to test your implementation: let the user enter the array
size n, allocate memory respectively and fill the array with values 0, 1, 2, . . . , n−1.

c) Now test your program by creating a large array, e.g. with size n = SHRT MAX− 1
(the latter is defined in limits.h), and search for the last value in the array. What
happens?

Solution idea: To avoid an overflow, compute the midpoint as left+⌊(right− left)/2⌋
instead of ⌊(right + left)/2⌋.

Exercise 2 (Cyclically Sorted Sequences)

A sequence x1, . . . , xn is called cyclically sorted if there exists some index i such that
the list xi, xi+1, . . . , xn, x1, . . . , xi−1 is weakly increasing, i.e. it holds that

xi ≤ xi+1 ≤ . . . ≤ xn ≤ x1 ≤ . . . ≤ xi−1

Provide a pseudo code function which, given a cyclically sorted integer array clist of

1



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 7

length n, computes the index i of the minimal element. The algorithm should have time
complexity O(log(n)).

Solution: We assume that all values occur at most once (otherwise doubles have to
be eliminated first).

Using a variant of binary search to solve this exercise, we can maintain two variables
left=0 and right=n-1 which specify the search interval. As usual, one computes mid =

left + (right - left) / 2. If clist[mid] <= clist[right], the minimal element
must be between left and mid. Thus we set right=mid, otherwise left=mid+1. With
this approach the search interval is decreased until a single element is left. Since the
search space is halved in every iteration, the time complexity is in O(log(n)).

Exercise 3 (Deletion in Binary Search Trees)

Consider binary trees as described by the following record:

Listing 1 Record describing a binary tree.

1: record btree =
2: begin

3: key : integer;
4: data : . . . ;
5: left, right : ˆbtree;
6: end

Use pseudo code to describe an algorithm that deletes the element associated with a
certain key from a tree. You may assume that there are no duplicate keys and exclude
the case where the element that is to be removed occurs at the root.

Solution: See Listing 2.

Exercise 4 (Binary Search Trees)

In this exercise you have to implement the data structure and basic operations for binary
search trees in C.

a) Define a struct specifying a binary search tree as described in Listing 1. The type
of a node’s data may be chosen freely.

b) Provide a function getData which checks whether a given key occurs in the tree
and returns the respective data.

c) Write a function insert to add a new element if the respective key does not yet
occur.

2



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 7

d) Implement a function delete to remove an element from the tree. Try to consider
the case where the root gets deleted as well.

e) What is the time complexity of these operations if i) the inserted elements are
distributed randomly, ii) the elements are inserted in increasing order?

Solution: See the program btree.c.

3



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 7

Listing 2 Deletion in binary search trees.

Input: pointer to the root of a binary search tree T , key x
Output: false if x does not occur, true otherwise. The tree is altered such that the

element with key x is deleted if it exists.

1: begin

2: N := T ; /* search for x in tree */
3: while N 6= nil and N ˆ.key 6= x do

4: P := N ;
5: if x < N ˆ.key then

6: N := N ˆ.left ;
7: else

8: N := N ˆ.right ;
9: if N = nil then

10: return false; /* fail if x was not found */
/* case 1: N has no left child */11: if N 6= T then

12: if N ˆ.left = nil then

13: if x ≤ Pˆ.key then

14: Pˆ.left := N ˆ.right ;
15: else

16: Pˆ.right := N ˆ.right ;
/* case 2: N has no right child */17: else if N ˆ.right = nil then

18: if x ≤ Pˆ.key then

19: Pˆ.left := N ˆ.left ;
20: else

21: Pˆ.right := N ˆ.left ;
/* case 3: N has two children */22: else

23: N1 := N ˆ.left ; /* search tree for predecessor N1 of N */
24: P1 := N ;
25: while N1ˆ.right 6= nil do

26: P1 := N1;
27: N1 := N1ˆ.right ; /* N1 is predecessor of N */
28: P1ˆ.right := N1ˆ.left ; /* delete N1 */
29: N ˆ.key = N1ˆ.key ; /* copy content of N1 to N */
30: N ˆ.data = N1ˆ.data ;
31: return true
32: end

4


