
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe and Sarah Winkler

20 May 2008

Proseminar Algorithmen und Datenstrukturen

Exercise Sheet 8

Exercise 1 (Trees)

In the lecture the following terms are defined in the context of trees: node, edge, root,
degree, level, height, ancestor, descendant, parent, child, path. Consider the tree given
in the figure below and answer the following questions.

A

B

X

R S T

Y Z

C

D

E

L M N

F

G H I

a) Which node is the root node? Node A is the root.

b) Give the degree of the following Nodes: D, E, C. What is the degree of the tree
itself?
The degree of Node D is 1 of E is 3 and C is 2.
The tree has degree 3, because the maximum degree of a single Node is three, in
this case of B, X, E and F.

c) What is the level of the following nodes: A, B, Z, D, G, L? What is the height of
the tree?
The levels for Nodes A, B, Z, D, G, L are 0, 1, 2, 2, 3, 4.

1



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 8

The height of the tree is equal to the maximum level of a single node of the tree.
In this case because of nodes L, M, N it is 4.

d) Categorize the relation between the following pairs of nodes with, ancestor, de-
scendant, parent, child: (Y,A),(Y,B)

• A is an Ancestor of Y. Y is a descendant of A.

• B is the parent node of Y. Y is a child node of B. B is also an ancestor of Y.

e) Give all child nodes, the parent node, all ancestors and all descendants of D.

Node D has

• Node E as child

• Nodes E, L, M, N as descendants

• Node C as parent

• Node C, A as ancestors

f) List all paths that contain Node D.

• (A,C)(C,D)(D,E)(E,L)

• (A,C)(C,D)(D,E)(E,M)

• (A,C)(C,D)(D,E)(E,N)

• (C,D)(D,E)(E,L)

• (C,D)(D,E)(E,M)

• (C,D)(D,E)(E,N)

• (D,E)(E,L)

• (D,E)(E,M)

• (D,E)(E,N)

• (A,C)(C,D)(D,E)

• (A,C)(C,D)

• (C,D)(D,E)

• (C,D)

• (D,E)

Exercise 2 (AVL-Trees)

For the following trees decide whether they are balanced or not and specify balance
factors for all nodes. If a tree is not balanced identify all roots of smallest unbalanced
subtrees and balance them using rotations.

2



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 8

a)

A

B

C

J K

D

M

F

H

R

I

The tree is balanced. The balance factors
are given in brackets at each node.

A(0)

B(0)

C(0)

J K

D(1)

M

F(-1)

H(-1)

R

I(0)

A

B F

H

R

The tree is not balanced. The balance fac-
tors are given in brackets at each node.
There is one critical node F.

A(2)

B(0) F(-2)

H(1)

R

To solve the critical node F we need to
perform a double rotation. First do a sin-
gle Roation to the left.

A(2)

B(0) F(-2)

R(-1)

H

In the second step a single rotation to the
right is needed.

A(1)

B(0) R(0)

H F

b) Insert the following nodes into an empty AVL tree. Show each step and what
rotations are needed. Nodes to insert: 10, 40, 35, 25, 60, 30, 80, 50, 27, 28, 38

3



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 8

10

10

40

In the next step a double rotation first to the right at 40 and next to the left at
10 is needed.

35

10 40

The insertion of 25 and 60 is straight-forward. In the next step, for the insertion
of 30, a single rotation to the left is necessary.

35

25

10 30

40

60

For insertion of 80 a single rotation to the left at 40 is done.

35

25

10 30

60

40

50

80

35

25

10 30

27

60

40

50

80

For insertion of 28 a double rotation is done. First part is rotation to the right and
the second part a rotation to the left.

4



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 8

35

25

10 28

27 30

60

40

50

80

35

25

10 28

27 30

60

40

38 50

80

c) Consider the record describing binary trees from the last exercise sheet. Modify
the record so that it can be used to represent AVL trees.

Listing 1 Record describing an avl tree.

1: record avltree =
2: begin

3: key : integer;
4: data : . . . ;
5: left, right : ˆavltree;
6: balance : integer;
7: end

d) Assume that a new node was inserted into the AVL tree and that the balance
factors have not yet been updated. Further assume that all keys are distinct. Use
pseudo code to describe an algorithm that detects if the tree is in imbalance for
the inserted node, and corrects the tree with rotations if necessary. Also update
the balance factors.
The head of the algorithm should be as follows:

Listing 2 Rebalance

Input: T : pointer to the root of a tree which is an AVL-tree where a node with key
key has just been inserted.

key : key of the inserted node.
Output: T : pointer to the restructured AVL tree.

5



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 8

Exercise 3 (Binary Search)

Extend the binary search example from the last exercise sheet such that it is able to
work as a telephone book. Create a user interface that allows the user to insert, search
and delete telephone numbers. As a simplification assume that each person is identified
by the lastname. Also assume that telephone number and lastname are not longer than
50 characters.

Hint: For string comparison use the function strcmp. For string assignment use strc-

py.

6



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 8

Listing 3 Rebalance

Input: T : pointer to the root of a tree which is an AVL-tree where a node with key
key has just been inserted.

key : key of the inserted node.
Output: T : pointer to the restructured AVL tree.

1: begin

2: N := T ; /* N represents the currently traversed node */
3: P := nil ; /* P represents the parent node of the currently traversed node */
4: C := T ; /* C is the critical node, it is the node at the path from the root to the

inserted node with the highest level that is unequal to 0 */
5: CC := nil ; /* CC the child of the critical node. It is important to decide

whether a double or single rotation is needed */
6: while N 6= nil and N ˆ.key 6= key do

7: if N ˆ.balance 6= 0 then

8: C := N ;
9: P := N ;

10: if key < N ˆ.key then

11: N := N ˆ.left ;
12: else

13: N := N ˆ.right ;
14: if P = C then

15: CC := N

16: call updateBalance(C )); /* updates the balance of the tree after the insertion
of key */

17: if C 6= nil then

18: if CCˆ.key < key ∧ Cˆ.key > key then

19: Cˆ.balance := 0;
20: CC ˆ.balance := −1;
21: TN := rotateLeft(CC )
22: TN ˆ.balance := 0;
23: Cˆ.left = TN ;
24: C = rotateRight(C );
25: else if CCˆ.key > key ∧ Cˆ.key < key then

26: Cˆ.balance := 0;
27: CC ˆ.balance := 1;
28: TN := rotateRight(CC )
29: TN ˆ.balance := 0;
30: Cˆ.right = TN ;
31: C = rotateLeft(C );
32: else

33: C := singleRotation(C );
34: end

7



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 8

Listing 4 Rebalance

1: procedure updateBalance(C : ˆavltree, key : integer)
2: begin

3: while C 6= nil do

4: if key < Cˆ.key then

5: Cˆ.balance := Cˆ.balance − 1; /* because the left branch of C is one level
higher after insertion */

6: C := Cˆ.left ;
7: else if key > Cˆ.key then

8: Cˆ.balance := Cˆ.balance + 1; /* because the right branch of C is one level
higher after insertion */

9: C := Cˆ.right ;
10: end

11: function rotateLeft(T : ˆavltree) : ˆavltree
12: begin

13: R := Tˆ.right ; /* rotate to the left */
14: TEMP := Rˆ.left ;
15: Rˆ.left := T ;
16: Tˆ.right := TEMP ;
17: return R;
18: end

19: function rotateRight(T : ˆavltree) : ˆavltree
20: begin

21: L := Tˆ.left ; /* rotate to the right */
22: TEMP := Lˆ.right ;
23: Lˆ.right := T ;
24: Tˆ.left := TEMP ;
25: return L;
26: end

27: function singleRotation(T : ˆavltree) : ˆavltree
28: begin

29: if Tˆ.balance > 1 then

30: Tˆ.balance := 0;
31: if Tˆ.left 6= nil then

32: Tˆ.leftˆ.balance := 0 /* null check to avoid nullpointer */
33: T := rotateLeft(T );
34: else if Tˆ.balance < −1 then

35: Tˆ.balance := 0;
36: if Tˆ.right 6= nil then

37: Tˆ.rightˆ.balance := 0 /* null check to avoid nullpointer */
38: T := rotateRight(T );
39: return T

40: end

8


