
Universität Innsbruck - Institut für Informatik
Prof. Clemens Ballarin, Robert Binna, Friedrich Neurauter, Fran-
cois Scharffe and Sarah Winkler

27 May 2008

Proseminar Algorithmen und Datenstrukturen

Exercise Sheet 9

Exercise 1 (AVL)

a) Give AVL trees of height h (h = 0, . . . , 4) with minimal number of nodes.

h=0 a

h=1 a

b

a

b

h=2 a

b

c

d

a

b

c

d

a

b d

c

a

b d

c

h=3 a

b

c

d

e

f

. . .

h=4 a

b

c

d

e

f

g

h

. . .

1



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 9

b) Give a construction that for any height h yields an AVL tree Th with minimal
number of nodes. Argue that your construction indeed yields a tree where the
number of nodes is minimal.

An inductive construction of AVL trees is done as follows:
T0: .
T1: .

.

T2: .

.

.

.

Th+2: .

Th+1 Th

A minimal AVL tree of height h + 2 is constructed by adding minimal AVL trees
of height h + 1 as the left child and of height h as the right child of a new root.

c) Give a closed form for the number Nh of nodes in Th. Hint: from your construction,
derive a recursive definition of Nh. Then express Nh in terms of the Fibonacci
sequence Fi.

Nh = Nh−1 + Nh−2 + 1
This is equivalent to:

Nh + 1 = (Nh−1 + 1) + (Nh−2 + 1) (1)

By defining Uh := Nh + 1 with initializers U0 = N0 + 1 = 2 and U1 = 3, we get

Uh = Uh−1 + Uh−2 (2)

which satisfies the definition of the Fibonacci sequence:

Fi = Fi−1 + Fi−2 F0 = 0, F1 = 1 (3)

However, due to the different initializers for U and F , U is not exactly the Fibonacci
sequence but rather Uh = Fh+3 (easy!). Hence, we can express Nh in terms of the
Fibonacci sequence as follows:

Nh = Fh+3 − 1

Knowing the closed form

Fh =
1
√

5





(

1 +
√

5

2

)h

−

(

1 −
√

5

2

)h




2



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 9

for the Fibonacci sequence, we immediately get a closed form for Nh:

Nh =
1
√

5





(

1 +
√

5

2

)h+3

−

(

1 −
√

5

2

)h+3


− 1 (4)

Exercise 2 (Bucket sort)

a) Give the pseudo code for the bucket sort algorithm data structure and useful opera-
tions. You will consider numbers having k digits or less, digit values ∈ 0, . . . , b − 1.

b) Give the pseudo code for a recursive bucket sort algorithm. You will start to sort
the most significant digit first.

The numbers are of base b and can can have up to k digits. A bucket is represented
as a list of integers:

Listing 1 bucket data structure

1: bucket is declared as array 0..b − 1 of lists of integer;

The needed operations are thus the classical list operations: add, size, append,
getElement. A sig variable represent the significant digit for the current bucket.

c) How many buckets does your algorithm store simultaneously at a given time? Is it
possible to do better? Explain how. It is possible to reduce the number of buckets
by starting to sort on the less significant digit.

Exercise 3 (Insertion and Selection algorithms)

a) Implement in C the insertion and selection sorting algorithms. Develop a user
interface in order to select the size and randomly generate values for an array,
print the array, check if the array is ordered and order the array using one of the
algorithms. See the program sort.c.

b) Stable algorithms does not change relative position of elements with equal values.
Are the selection and insertion algorithms stable ? Depends on the implementation
you realized, they are stable in our implementation.

3



Proseminar Algorithmen und Datenstrukturen – Exercise Sheet 9

Listing 2 bucketSort

Input: the list to be sorted list, the significant digit sig, the sorted list sorted.
Output: the sorted list sorted updated with list.
1: begin

2: i := 0;
3: while i < b do

4: bucket[i] := empty;
5: i := i + 1;
6: i := 0;
7: if sig > 0 then

8: while i <size(list) do

9: add(bucket[(list(i)/bsig−1)%b],getElement(list,i));
10: i := i + 1;
11: i := 0;
12: while i < b do

13: if size(bucket[i])> 1 then

14: bucketSort(bucket[i],sig − 1,sorted);
15: else

16: append(sorted,bucket[i]);
17: i := i + 1;
18: else

19: append(sorted,list);
20: return(sorted);
21: end

4


