Automatic Deduction - Introduction to Isabelle

LVA 703522

1 Lambda Calculus

$1.1 \quad \alpha$-Conversion

\triangleright Which of the following λ-terms (if any) are α-equivalent?
(a) $\lambda x y \cdot y x$
(e) $\lambda x \cdot y x$
(b) $\lambda x y \cdot x y$
(f) $\lambda x \cdot x y$
(c) $\lambda y x \cdot y x$
(g) $\lambda y \cdot y x$
(d) $\lambda y x \cdot x y$
(h) $\lambda y \cdot x y$

1.2β-Reduction

$\triangleright \beta$-reduce the following λ-terms to their normal form. How many derivations of the normal form exist?
(a) $(\lambda x y \cdot x)(\lambda x \cdot x x)(\lambda x \cdot x x)$
(b) $(\lambda x y . y)(\lambda x . x x)(\lambda x . x x)$
(c) $(\lambda x . f x x)((\lambda f . f x) g)$

1.3 Church Numerals

Recall the encoding of natural numbers as λ-terms via Church numerals:

$$
n \equiv \lambda f x . f^{n} x
$$

\triangleright Define a function mult $\equiv \lambda m n$. \ldots as a λ-term such that mult $m n$ encodes $m \cdot n$, i.e. multiplication of Church numerals.
\triangleright Define a function $\exp \equiv \lambda m n \ldots$ as a λ-term such that $\exp m n$ encodes $m^{\wedge} n$, i.e. exponentiation of Church numerals.

$1.4 \alpha \beta \eta$-Equivalence in Isabelle

Equality in Isabelle is (usually) modulo $\alpha \beta \eta$-equivalence. Therefore the theorem refl: $\mathrm{t}=\mathrm{t}$ is sufficient to prove the following lemmas:

```
lemma alpha: "(\lambdax. x) = (\lambday. y)"
    by (rule refl)
lemma beta: "(\lambdaf. f x ) f = f x"
    by (rule refl)
lemma eta: "(\lambdax. f x) = f"
    by (rule refl)
```

\triangleright Prove these lemmas in Isabelle. What happens wrt. $\alpha \beta \eta$-equivalence?

1.5 Church Numerals in Isabelle

In this exercise we will use Isabelle to perform computations with Church numerals. Isabelle's simplifier, which is invoked on a proof state by simp, performs term rewriting. unfolding can be used to unfold definitions.
\triangleright Make yourself familiar with the definition command (Section 4.1.1 of the Isabelle/Isar Reference manual). Use it to define the functions add, mult and exp (cf. Exercise 1.3) which perform addition, multiplication and exponentiation, respectively, of Church numerals in Isabelle.
\triangleright Prove the following lemmas. Which values are computed for ?x?
lemma "add ($\lambda \mathrm{f} x . \mathrm{f}(\mathrm{f} x))(\lambda \mathrm{f} x . \mathrm{f}(\mathrm{f}(\mathrm{f} x)))=? \mathrm{x}$ "
unfolding add_def - we can unfold the definition first ...
apply simp
done
lemma "mult ($\lambda \mathrm{f} x . \mathrm{f}(\mathrm{f} x)$) ($\lambda \mathrm{f} x . \mathrm{f}(\mathrm{f}(\mathrm{f} x))$) $=$?x"
by (simp add: mult_def) - ... or give it to the simplifier directly
\triangleright Compute $2+2 \cdot(3+1)$ in a similar fashion.
\triangleright Show that 2 ^ $3=2 \cdot 2 \cdot 2$.

