Automatic Deduction - Introduction to Isabelle

LVA 703522

1 Permutations of Lists

In this exercise we consider lists (over an arbitrary element type). The cons operation is denoted by $x \cdot x s,|x s|$ is the length of $x s$ and $x s_{i}$ the i th element. Permutations of lists are defined inductively by the following four rules.

$$
\begin{array}{ccc}
([],[]) \in \text { Perm } & (\mathrm{Nil}) & (x \cdot y \cdot l, y \cdot x \cdot l) \in \text { Perm } \\
\frac{(x s, y s) \in \mathbf{P e r m}}{(z \cdot x s, z \cdot y s) \in \operatorname{Perm}} & (\mathrm{Cons}) & \frac{(x s, y s) \in \operatorname{Perm} \quad(y s, z s) \in \mathbf{F}}{(x s, z s) \in \text { Perm }} \tag{Trans}
\end{array}
$$

The defined set Perm contains pairs of lists. In each pair the lists only in the order of elements.
\triangleright State the induction rule and prove the following statements (on paper).
a) For $(x s, y s) \in$ Perm holds: $x s$ and $y s$ have equal length.
b) For $(x s, y s) \in$ Perm holds: there is a permutation π of numbers $1 \ldots|x s|$, such that $x s_{i}=y s_{\pi(i)}$ for all $i=1 \ldots|x s|$.

2 Rule Induction

Formalise part of the lecture on inductive sets in Isabelle.
We define a predicate closed f A, where $f::$ 'a set \Rightarrow 'a set and A::'a set.
definition closed : : "('a set \Rightarrow 'a set) \Rightarrow 'a set \Rightarrow bool" where "closed f $A \equiv f A \subseteq A "$
\triangleright Show closed $f A \wedge$ closed $f B \Longrightarrow$ closed $f(A \cap B)$ if f is monotone (the predicate mono is predefined).
\triangleright Define a function lfpt mapping f to the intersection of all f-closed sets.
\triangleright Show that lfpt f is a fixed point of f if f is monotone.
\triangleright Show that lfpt f is the least fixpoint of f .

We now declare a constant R:: ('a set \times 'a) set. This is the set of rules, which will not be further specified here.
consts R : : "('a set \times 'a) set"
Then we define Rhat::'a set \Rightarrow 'a set in terms of R .
definition Rhat : : "'a set \Rightarrow 'a set"
where "Rhat $B \equiv\{x . \exists H .(H, x) \in R \wedge H \subseteq B\}$ "
\triangleright Show soundness of rule induction using R and lfpt Rhat.

3 Two Grammars

The most natural definition of valid sequences of parentheses is this:

$$
S \rightarrow \epsilon\left|{ }^{\prime}\left({ }^{\prime} S^{\prime}\right)^{\prime}\right| \quad S S
$$

where ϵ is the empty word.
A second, somewhat unusual grammar is the following one:

$$
T \rightarrow \epsilon \mid \quad T^{\prime}\left({ }^{\prime} T^{\prime}\right)^{\prime}
$$

\triangleright Model both grammars as inductive sets S and T and prove, on paper and using rule inducion, $S=T$.

