Automatic Deduction - Introduction to Isabelle
 LVA 703522

1 Two Grammars

The most natural definition of valid sequences of parentheses is this:

$$
S \quad \rightarrow \quad \epsilon \quad\left|\quad{ }^{\prime}\left({ }^{\prime} S^{\prime}\right)^{\prime} \quad\right| \quad S S
$$

where ϵ is the empty word.
A second, somewhat unusual grammar is the following one:

$$
T \quad \rightarrow \quad \epsilon \quad \mid \quad T^{\prime}\left({ }^{\prime} T^{\prime}\right)^{\prime}
$$

\triangleright Make the definitions of sets S and T in Isabelle and give structured Isar proofs leading to the theorem $\mathrm{S}=\mathrm{T}$.
Hint: use lists over a specific type to repesent words.
The alphabet:
datatype alpha $=\mathrm{A} \mid \mathrm{B}$

2 Polynomial sums

\triangleright Produce structured proofs of the following theorems, using induction and calculational reasoning in Isar.
Note that the given tactic scripts are of limited use in reconstructing structured proofs; nevertheless the hints of automated steps below can be re-used to finish sub-problems. The \sum symbol can be entered as " \backslash <Sum>"; note that numerals in Isabelle/HOL are polymorphic.

```
theorem - problem
    fixes n : : nat
    shows " 2 * ( \(\left.\sum \mathrm{i}=0 . . \mathrm{n} . \mathrm{i}\right)=\mathrm{n} *(\mathrm{n}+1)\) "
    by (induct n) simp_all
```

```
theorem - problem
```

theorem - problem
fixes n : : nat
fixes n : : nat
shows " $\left(\sum \mathrm{i}=0 . .<\mathrm{n} .2 * i+1\right)=\mathrm{n}^{2}$ "

```
    shows " \(\left(\sum \mathrm{i}=0 . .<\mathrm{n} .2 * i+1\right)=\mathrm{n}^{2}\) "
```

by (induct n) (simp_all add: power_eq_if nat_distrib)

```
theorem - problem
    fixes n : : nat
    shows "( \(\left.\mathrm{y} \mathrm{i}=0 . .<\mathrm{n} .2^{\wedge} \mathrm{i}\right)=2 \wedge n-(1:: n a t) "\)
    by (induct \(n\) ) (simp_all split: nat_diff_split)
theorem - problem
    fixes n : : nat
    shows " 2 * ( \(\left.\sum \mathrm{i}=0 . .<\mathrm{n} .3^{\wedge} \mathrm{i}\right)=3^{\wedge} \mathrm{n}-(1::\) nat)"
    by (induct n) (simp_all add: nat_distrib)
theorem - problem
    fixes n : : nat
    assumes k: " 0 < k"
    shows " \(k\) - 1) * ( \(\left.\sum \mathrm{i}=0 . .<n . k^{\wedge} i\right)=k \wedge n-(1:: n a t) "\)
    by (induct \(n\) ) (insert \(k\), simp_all add: nat_distrib)
```

