Automatic Deduction - Introduction to Isabelle LVA 703522

1 Lambda Calculus

1.1 Church Numerals in Isabelle

In this exercise we will use Isabelle to perform computations with Church numerals. Isabelle's simplifier, which is invoked on a proof state by simp, performs term rewriting. unfolding can be used to unfold definitions.
\triangleright Make yourself familiar with the definition command (Section 4.1.1 of the Isabelle/Isar Reference manual). Use it to define the functions add, mult and exp which perform addition, multiplication and exponentiation, respectively, of Church numerals in Isabelle.

```
definition
    add :: "_" where "add m n = ( }\lambda\textrm{f}\mathrm{ x. n f (m f x))"
definition
    mult :: "_" where "mult m n = ( }\lambda\textrm{f}\times\textrm{x}.\textrm{n}(\textrm{m}f)\textrm{x})
definition
    exp :: "_" where "exp m n = (\lambdaf x. n m f x)"
```

\triangleright Prove the following lemmas. Which values are computed for ? x ?

```
lemma five: "add ( }\lambda\textrm{f}x.f(f x)) (\lambdaf x. f (f (f x))) = ?x"
    unfolding add_def - we can unfold the definition first ...
    apply (rule refl)
    done
```

The value $\lambda \mathrm{f} x . \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f} x)))$) is computed for x .

```
lemma six: "mult ( }\lambda\textrm{f}x.f(f x)) (\lambdaf x. f (f (f x))) = ?x"
    by (simp add: mult_def) - ... or give it to the simplifier directly
```

The value $\lambda \mathrm{f} x$. f ($\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f} x)))$) is computed for $? \mathrm{x}$.
\triangleright Compute $2+2 \cdot(3+1)$ in a similar fashion.

```
lemma ten: "add ( }\lambda\textrm{f}x.f(f)x)
    (mult (\lambdaf x. f (f x))
    (add (\lambdaf x. f (f (f x)))
                                    (\lambdaf x. f x))) = ?x"
    by (simp add: add_def mult_def)
```

The value $\lambda \mathrm{f}$ x. $\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f} x))))))))$ is computed for $2+2 \cdot(3+1)$.
\triangleright Show that $2^{\wedge} 3=2 \cdot 2 \cdot 2$.
lemma $\exp (\lambda \mathrm{f} x . \mathrm{f}(\mathrm{f} x))(\lambda \mathrm{f}$. f (f (f x))) $=$
 by (simp add: mult_def exp_def)

