
Universität Innsbruck SS 2008
Institut für Informatik Exercise Sheet 2
Prof. Dr. Clemens Ballarin Due 17 April 2008

Automatic Deduction — Introduction to Isabelle

LVA 703522

1 Type Inference

B Is the term λx. x x type correct? Justify your answer.

No. The only applicable typing rule is that for abstraction:

Γ[x 7→ τ1] ` xx :: τ2

Γ ` λx. x x :: τ1 ⇒ τ2
.

Next, the only applicable typing rule is that for application:

Γ[x 7→ τ1] ` x :: σ ⇒ τ2 Γ[x 7→ τ1] ` x :: σ

Γ[x 7→ τ1] ` xx :: τ2
.

Next, the only applicable typing rule (on both sides) is that for variables.
This rule is only applicable on both sides however if Γ[x 7→ τ1](x) = σ ⇒ τ2

and Γ[x 7→ τ1](x) = σ, i.e. σ = σ ⇒ τ2 for some types σ and τ2, which is
clearly not possible.

2 Natural Deduction

We will use the calculus of natural deduction to prove some lemmas of
propositional and predicate logic in Isabelle.

2.1 Propositional Logic

• Only use these rules in the proofs:

notI: (P =⇒ False) =⇒ ¬ P

notE: [[¬ P; P]] =⇒ R

conjI: [[P; Q]] =⇒ P ∧ Q

conjE: [[P ∧ Q; [[P; Q]] =⇒ R]] =⇒ R

disjI1: P =⇒ P ∨ Q

disjI2: Q =⇒ P ∨ Q

disjE: [[P ∨ Q; P =⇒ R; Q =⇒ R]] =⇒ R

impI: (P =⇒ Q) =⇒ P −→ Q

1



impE: [[P −→ Q; P; Q =⇒ R]] =⇒ R

mp: [[P −→ Q; P]] =⇒ Q

iffI: [[P =⇒ Q; Q =⇒ P]] =⇒ P = Q

iffE: [[P = Q; [[P −→ Q; Q −→ P]] =⇒ R]] =⇒ R

• Only use the methods (rule r), (erule r) and assumption, where r is
one of the rules given above.

B Prove the following lemmas in Isabelle.

lemma "((A ∨ B) ∨ C) −→ A ∨ (B ∨ C)"
apply (rule impI)
apply (erule disjE)
apply (erule disjE)
apply (rule disjI1)
apply assumption

apply (rule disjI2)
apply (rule disjI1)
apply assumption

apply (rule disjI2)
apply (rule disjI2)
apply assumption
done

lemma "(A ∨ A) = (A ∧ A)"
apply (rule iffI)
apply (erule disjE)
apply (rule conjI)
apply assumption

apply assumption
apply (rule conjI)
apply assumption

apply assumption
apply (erule conjE)
apply (rule disjI1)
apply assumption
done

lemma "(D −→ A) −→ (A −→ (B ∧ C)) −→ (B −→ ¬ C) −→ ¬ D"
apply (rule impI)+
apply (rule notI)
apply (erule impE)
apply assumption

apply (erule impE)
apply assumption

apply (erule conjE)
apply (erule impE)
apply assumption

apply (erule notE)

2



apply assumption
done

lemma "(A −→ ¬ B) = (B −→ ¬ A)"
apply (rule iffI)
apply (rule impI)
apply (rule notI)
apply (erule impE)
apply assumption

apply (erule notE)
apply assumption

apply (rule impI)
apply (rule notI)
apply (erule impE)
apply assumption

apply (erule notE)
apply assumption
done

2.2 Pierce’s law

Prove Pierce’s law ((A −→ B) −→ A) −→ A.

B First give a paper proof using case distinction and/or proof by contradic-
tion.

A proof by case distinction works as follows. Suppose A. Then the proposi-
tion holds, because this is the consequent of the the outermost implication.
Otherwise, if we suppose B the proposition evaluates to true, and likewise if
we suppose ¬ B.

B Now give a proof in Isabelle. In addition to the rules and methods from
Exercise 2.1, you may use (case_tac P) (where P is a Boolean expression,
e.g. a variable) for case distinctions, back to select a different unifier when
applying a method, and the theorem classical: (¬ P =⇒ P) =⇒ P.

lemma Pierce: "((A −→ B) −→ A) −→ A"
apply (case_tac "A")
apply (rule impI)
apply assumption

— case ¬ A
apply (case_tac "B")
apply (rule impI)
apply (erule impE)
apply (rule impI)
apply assumption

apply assumption
— case ¬A; ¬B
apply (rule impI)

3



apply (erule impE)
apply (rule impI)
apply (erule notE)
apply assumption

apply assumption
done

2.3 Predicate Logic

We are again talking about proofs in the calculus of Natural Deduction. In
addition to the theorems given in the exercise “Propositional Logic” (Exer-
cises 2), you may now also use

exI: P x =⇒ ∃ x. P x

exE: [[∃ x. P x;
∧
x. P x =⇒ Q]] =⇒ Q

allI: (
∧
x. P x) =⇒ ∀ x. P x

allE: [[∀ x. P x; P x =⇒ R]] =⇒ R

B Give a proof of the following propositions or an argument why the formula
is not valid:

lemma "(∃ x. ∀ y. P x y) −→ (∀ y. ∃ x. P x y)"
apply (rule impI)
apply (rule allI)
apply (erule exE)
apply (rule exI)
apply (erule allE)
apply assumption
done

lemma "(∀ x. P x −→ Q) = ((∃ x. P x) −→ Q)"
apply (rule iffI)
apply (rule impI)
apply (erule exE)
apply (erule allE)
apply (erule impE)
apply assumption

apply assumption
apply (rule allI)
apply (rule impI)
apply (erule impE)
apply (rule exI)
apply assumption

apply assumption
done

lemma "((∃ x. P x) ∧ (∃ x. Q x)) = (∃ x. (P x ∧ Q x))"

4



refute
oops

A possible counterexample is: P = even, Q = odd, interpreted over the nat-
ural numbers.
lemma "((∃ x. P x) ∨ (∃ x. Q x)) = (∃ x. (P x ∨ Q x))"

apply (rule iffI)
apply (erule disjE)
apply (erule exE)
apply (rule exI)
apply (rule disjI1)
apply assumption

apply (erule exE)
apply (rule exI)
apply (rule disjI2)
apply assumption

apply (erule exE)
apply (erule disjE)
apply (rule disjI1)
apply (rule exI)
apply assumption

apply (rule disjI2)
apply (rule exI)
apply assumption
done

The following lemma also requires classical: (¬ P =⇒ P) =⇒ P (or an
equivalent theorem) in order to be proved.
lemma "(¬ (∀ x. P x)) = (∃ x. ¬ P x)"

apply (rule iffI)
apply (rule classical)
apply (erule notE)
apply (rule allI)
apply (rule classical)
apply (erule notE)
apply (rule exI)
apply assumption

apply (erule exE)
apply (rule notI)
apply (erule allE)
apply (erule notE)
apply assumption
done

2.4 A Riddle: Rich Grandfather

B First prove the following formula, which is valid in classical predicate
logic, informally with pen and paper. Use case distinctions and/or proof by
contradiction.

5



If every poor man has a rich father,
then there is a rich man who has a rich grandfather.

theorem
"∀ x. ¬ rich x −→ rich (father x) =⇒
∃ x. rich (father (father x)) ∧ rich x"

Proof
(1) We first show: ∃ x. rich x.
Proof by contradiction.

Assume ¬ (∃ x. rich x).
Then ∀ x. ¬ rich x.
We consider an arbitrary y with ¬ rich y.
Then rich (father y).

(2) Now we show the theorem.
Proof by cases.

Case 1: rich (father (father x)).
The rich man who has a rich grandfather is x. We are done.

Case 2: ¬ rich (father (father x)).
Then rich (father (father (father x))).
Also rich (father x),
because otherwise rich (father (father x)).
The rich man who has a rich grandfather is father x.

qed

B Now prove the formula in Isabelle using a sequence of rule applications
(i.e. only using the methods rule, erule and assumption). In addition to the
theorems that were allowed in the exercise “Predicate Logic”, you may now
also use classical: (¬ P =⇒ P) =⇒ P.

Since we are not allowed to use lemmas, (1) will show up as two copies of
the same proof script in the proof.

theorem
"∀ x. ¬ rich x −→ rich (father x) =⇒
∃ x. rich (father (father x)) ∧ rich x"
apply (rule classical)
apply (rule exI)
apply (rule conjI)

— Show rich (father (father x2))
apply (rule classical)

— Assume ¬ rich (father (father x2)), case 2
apply (rule allE) apply assumption
— use rule rather then erule in order not to delete the assumption, it is

needed a second time

6



apply (erule impE) apply assumption
— Now we have rich (father (father (father x2)))

apply (erule notE)
— Show ∃ x. rich (father (father x)) ∧ rich x

apply (rule exI)
apply (rule conjI) apply assumption

— Show rich (father x2)
apply (rule classical)
apply (erule allE)
apply (erule notE)
apply (erule impE) apply assumption
apply assumption

— Show rich x2
apply (rule classical)

— Assume ¬ rich x2, case 1
apply (rule allE) apply assumption
apply (erule impE) apply assumption

— Now we have rich (father x2)
apply (erule notE)

— Show ∃ x. rich (father (father x)) ∧ rich x
apply (rule exI)
apply (rule conjI) apply assumption

— Show rich x41
apply (rule classical)
apply (erule allE)
apply (erule notE)
apply (erule impE) apply assumption
apply assumption
done

7


	Type Inference
	Natural Deduction
	Propositional Logic
	Pierce's law
	Predicate Logic
	A Riddle: Rich Grandfather


