Universität Innsbruck Institut für Informatik Prof. Dr. Clemens Ballarin SS 2008 Exercise Sheet 3 Due 8 May 2008

Automatic Deduction — Introduction to Isabelle LVA 703522

1 Isar

1.1 Propositional Logic

 \triangleright Provide Isar proof texts that prove the following lemmas. You may only use the methods rule and -.

lemma "(A \vee A) = (A \wedge A)" proof assume "A \lor A" then have a: "A" by rule from a a show "A \wedge A" by rule \mathbf{next} assume "A \land A" then have "A" by rule then show "A \vee A" by rule qed Variation, using backticks. lemma "(A \vee A) = (A \wedge A)" proof assume "A \vee A" then have "A" by rule from 'A' 'A' show "A \wedge A" by rule next assume "A \wedge A" then have "A" by rule then show "A \vee A" by rule \mathbf{qed} lemma "(A \lor B) \lor C \longrightarrow A \lor (B \lor C)" proof assume "(A \lor B) \lor C" then show "A \vee (B \vee C)" proof assume "A \vee B" then show ?thesis proof assume "A"

```
then show ?thesis by rule
next
assume "B"
then have "B ∨ C" by rule
then show ?thesis by rule
qed
next
assume "C"
then have "B ∨ C" by rule
then show ?thesis by rule
qed
qed
```

1.2 Predicate Logic

 \rhd Provide Isar proof texts that prove the following lemmas. Again, you may not use automation.

```
lemma "((\forall x. P x) \land (\forall x. Q x)) = (\forall x. (P x \land Q x))"
proof
  assume pq: "(\forall x. P x) \land (\forall x. Q x)"
  from pq have p: "\forall x. P x" ..
  from pq have q: "\forall x. Q x" ..
  show "\forall x. P x \land Q x"
  proof
     fix x
     from p have p': "P x" ..
     from q have q': "Q x" ..
     from p' q' show "P x \land Q x" ..
  qed
\mathbf{next}
  assume pq: "\forallx. P x \land Q x"
  show "(\forall x. P x) \land (\forall x. Q x)"
  proof
     show "\forall x. P x"
     proof
       fix x
       from pq have "P x \wedge Q x" ..
       then show "P x" \dots
     qed
  \mathbf{next}
     show "\forall x. Q x"
     proof
       fix x
       from pq have "P x \land Q x" ..
       then show "Q x" ..
     qed
  \mathbf{qed}
qed
```

```
lemma "((\exists x. P x) \lor (\exists x. Q x)) = (\exists x. (P x \lor Q x))"
proof
  assume "(\exists x. P x) \lor (\exists x. Q x)"
  then show "\exists x. P x \lor Q x"
  proof
    assume "∃x. P x"
     then obtain y where "P y" ..
     then have "P y \lor Q y" ..
     then show ?thesis ..
  \mathbf{next}
    assume "\exists x. Q x"
    then obtain y where "Q y" \ldots
    then have "P y \lor Q y" ..
     then show ?thesis ..
  qed
next
  assume "\exists x. P x \lor Q x"
  then obtain y where "P y \lor Q y" ..
  then show "(\exists x. P x) \lor (\exists x. Q x)"
  proof
    assume "P y"
     then have "\exists x. P x" ..
     then show ?thesis ..
  \mathbf{next}
     assume "Q y"
     then have "\exists x. Q x" ..
     then show ?thesis ..
  qed
qed
```

```
The following lemma also requires classical: (\neg P \implies P) \implies P (or an equivalent theorem) in order to be proved. You need to invoke this explicitly with proof rule classical or similar.
```

```
lemma "(¬ (\forall x. P x)) = (\exists x. \neg P x)"
proof
assume "¬ (\forall x. P x)"
show "\exists x. \neg P x"
proof (rule classical)
assume "¬ (\exists x. \neg P x)"
have "\forall x. P x" proof
fix x
show "P x"
proof (rule classical)
assume "¬ P x"
then have "\exists x. \neg P x".
with (¬ (\exists x. \neg P x)' show ?thesis ..
qed
qed
```

```
with '¬ (∀x. P x)' show ?thesis ..
qed
next
assume "∃x. ¬ P x"
then obtain x where "¬ P x" by rule
show "¬ (∀x. P x)" proof
assume "∀x. P x"
then have "P x" by rule
from '¬ P x' 'P x' show "False" by rule
qed
```

Hint: it may be useful to study the natural deduction proofs of these lemmas before attempting to provide Isar proofs.