Automatic Deduction — Introduction to Isabelle LVA 703522

1 **Permutations of Lists**

In this exercise we consider lists (over an arbitrary element type). The cons operation is denoted by $x \cdot xs$, |xs| is the length of xs and xs_i the *i*th element. Permutations of lists are defined inductively by the following four rules.

$$([], []) \in \mathbf{Perm} \qquad (Nil) \qquad (x \cdot y \cdot l, y \cdot x \cdot l) \in \mathbf{Perm} \qquad (Swap)$$

$$\frac{(xs, ys) \in \mathbf{Perm}}{(z \cdot xs, z \cdot ys) \in \mathbf{Perm}} \quad (\mathbf{Cons}) \qquad \frac{(xs, ys) \in \mathbf{Perm}}{(xs, zs) \in \mathbf{Perm}} \quad (\mathbf{Trans})$$

The defined set **Perm** contains pairs of lists. In each pair the lists only differ in the order of elements.

 \triangleright State the induction rule and prove the following statements (on paper). The induction rule consists of two bases cases and two induction steps. For $(xs, ys) \in \mathbf{Perm} \Rightarrow P(xs, ys)$ for some property P one needs to show:

• Base cases:

Nil: P([], [])**Swap:** $\forall x, y, l. P(x \cdot y \cdot l, y \cdot x \cdot l)$

• Induction steps

_ _ _ _

Cons: $\forall xs, ys, z. \ P(xs, ys) \Rightarrow P(z \cdot xs, z \cdot ys)$ **Trans:** $\forall xs, ys, zs. \ P(xs, ys) \land P(ys, zs) \Rightarrow P(xs, zs)$

a) For $(xs, ys) \in \mathbf{Perm}$ holds: xs and ys have equal length.

To be shown: $(xs, ys) \in \mathbf{Perm} \Rightarrow |xs| = |ys|$. Applying the induction rule yields four statements to be shown:

Nil:
$$|[]| = |[]| \checkmark$$

Swap: $|x \cdot y \cdot l| = |y \cdot x \cdot l| \checkmark$

Cons: Induction hypothesis: |xs| = |ys|From this the following is immediate: $|z \cdot xs| = |xs| + 1 \stackrel{\text{IH}}{=} |ys| + 1 = |z \cdot ys|$.

Trans: Induction hypothesis: |xs| = |ys|, |ys| = |zs|By transitivity of equality: |xs| = |zs|

b) For $(xs, ys) \in \mathbf{Perm}$ holds: there is a permutation π of numbers $1 \dots |xs|$, such that $xs_i = ys_{\pi(i)}$ for all $i = 1 \dots |xs|$.

By rule induction we again obtain four statements, which are to be shown:

- Nil: There is a permutation π with $[]_i = []_{\pi(i)}$. This is trivial since the list is empty.
- **Swap:** There is a permutaion π with $(x \cdot y \cdot l)_i = (y \cdot x \cdot l)_{\pi(i)}$. This holds for $\pi = (12)$.
- **Cons:** The induction hypothesis says that there exists a permutation π with $xs_i = ys_{\pi(i)}$ for all *i* (from 1 to |xs|).

From this we obtain a permutation τ by setting $\tau(1) := 1$ and $\tau(i) := \pi(i-1) + 1$ für i > 1. We have $(z \cdot xs)_i = (z \cdot ys)_{\tau(i)}$.

Trans: Induction hypothesis: there is a permutation π with $xs_i = ys_{\pi(i)}$ for all *i* and a permutation τ with $ys_i = zs_{\tau(i)}$ for all *i*. Then $\tau \circ \pi$ is also a permutation, and $xs_i = zs_{\tau(\pi(i))}$.

2 Rule Induction

Formalise part of the lecture on inductive sets in Isabelle.

 \triangleright Define a predicate closed f A, where f::'a set \Rightarrow 'a set and A::'a set.

 \triangleright Show closed f A \land closed f B \implies closed f (A \cap B) if f is monotone (the predicate mono is predefined).

lemma closed_int:

```
"[[ mono f; closed f A; closed f B ]] \implies closed f (A \cap B)" by (unfold closed_def mono_def) blast
```

 \triangleright Define a function lfpt mapping f to the intersection of all f-closed sets.

definition lfpt :: "('a set \Rightarrow 'a set) \Rightarrow 'a set" where "lfpt f $\equiv \bigcap \{B. \text{ closed f } B\}$ "

 \triangleright Show that lfpt f is a fixed point of f if f is monotone.

```
\mathbf{lemma} \; \texttt{lfpt_lower: "closed f B} \Longrightarrow \texttt{lfpt f \subseteq B"}
  by (unfold lfpt_def) auto
lemma lfpt_greatest:
  assumes A_smaller: "AB. closed f B \implies A \subseteq B"
  shows "A \subseteq lfpt f"
  by (unfold lfpt_def) (blast dest: A_smaller)
lemma 1:
  "mono f \implies f (lfpt f) \subseteq lfpt f"
  apply (rule lfpt_greatest)
  apply (rule subset_trans)
   apply (erule monoD)
   apply (erule lfpt_lower)
  apply (unfold closed_def)
  apply assumption
  done
lemma 2:
  "mono f \implies lfpt f \subseteq f (lfpt f)"
  apply (rule lfpt_lower)
  apply (unfold closed_def)
  apply (rule monoD, assumption)
  apply (rule 1, assumption)
  done
lemma lfpt_fixpoint:
  "mono f \implies f (lfpt f) = lfpt f"
  by (blast intro!: 1 2)
\triangleright Show that lfpt f is the least fixpoint of f.
lemma lfpt_least:
  assumes A: "A = f A"
  shows "lfpt f \subseteq A"
proof -
  from A have "closed f A" by (unfold closed_def) blast
  then show "lfpt f \subseteq A" by (rule lfpt_lower)
qed
\triangleright Declare a constant R::('a set \times 'a) set. This is the set of rules, which
will not be further specified here.
consts R :: "('a set \times 'a) set"
\triangleright Define Rhat::'a set \Rightarrow 'a set in terms of R.
definition Rhat :: "'a set \Rightarrow 'a set"
  where "Rhat B \equiv \{x. \exists H. (H,x) \in R \land H \subseteq B\}"
\triangleright Show soundness of rule induction using R and lfpt Rhat.
lemma monoRhat: "mono Rhat"
```

```
3
```

by (unfold mono_def Rhat_def) blast

Soundness of *rule induction* means that if some predicate P can be verified by rule induction, then P holds for all elements of the set (constructed as least fixed point).

```
lemma soundness:
  assumes hyp: "\forall (H,x) \in R. ((\forallh \in H. P h) \longrightarrow P x)"
  shows "\forallx \in lfpt Rhat. P x"
proof -
  from hyp have "closed Rhat {x. P x}"
     by (unfold closed_def Rhat_def) blast
  then have "lfpt Rhat \subseteq {x. P x}" by (rule lfpt_lower)
  then show ?thesis by blast
  qed
```

3 Two Grammars

The most natural definition of valid sequences of parentheses is this:

where ϵ is the empty word.

A second, somewhat unusual grammar is the following one:

$$T \rightarrow \epsilon \mid T'(T')'$$

 \triangleright Model both grammars as inductive sets S and T and prove, on paper and using rule inducion, S = T.

The inductive definitions are

$$\varepsilon \in S$$
 (S1) $\frac{w \in S}{(w) \in S}$ (S2) $\frac{v \in S \quad w \in S}{vw \in S}$ (S3)

and

$$\varepsilon \in T$$
 (T1) $\frac{v \in T \quad w \in T}{v(w) \in T}$ (T23)

In order to show S = T we show that S is contained in T and T in S. The latter is simpler, hence it is shown first.

In order to show $T \subseteq S$ we show that for any $x, x \in T \Longrightarrow x \in S$ by rule induction for the set T.

T1: $\varepsilon \in S \quad \checkmark$

T23: Induction hypothesis: $v \in S, w \in S$.

We need to show that $v(w) \in S$, which follows from the induction hypothesis by the following inference:

$$\frac{v \in S}{v(w) \in S} \xrightarrow{(W) \in S} (S2)$$

$$(S3)$$

For the direction $S \subseteq T$ we use the lemma (shown below).

$$\frac{v \in T \qquad w \in T}{vw \in T}$$
(T3)

Similar to the before, we show that for any $x, x \in S \implies x \in T$, this time by rule induction for the set S.

S1: $\varepsilon \in T \quad \checkmark$

S2: Induction hypothesis: $w \in T$.

Show that $(w) \in T$. This follows from the induction hypothesis by (T23) where $v = \varepsilon$.

S3: Induction hypothesis: $v \in T, w \in T$.

Show that $vw \in T$. Immediate with (T3).

Proof of Lemma (T3).

Following the scheme of the lecture, the induction rule for T is the theorem

$$\frac{x \in T \qquad P \varepsilon \qquad \frac{P v \qquad P w}{P v(w)}}{P x}$$

By setting $P x \equiv x \in T \land Q x$ for an arbitrary predicate Q we obtain this stronger version of the induction rule:

$$\frac{x \in T \qquad Q \varepsilon \qquad \frac{v \in T \qquad Q v \qquad w \in T \qquad Q w}{Q v(w)}}{Q x}$$

This is the rule that Isabelle derives. This rule is used in the proof of (T3). We will use the additional induction hypotheses in the proof of (T3). We show $vw \in T$ by rule induction on the second premise $w \in T$:

T1 $w = \varepsilon$

Show $v \in T$. This follows from the first premise $v \in T$.

T23 w = v'(w')

Show $vv'(w') \in T$. By induction hypothesis $vv' \in T, vw' \in T$. By induction hypothesis of the stronger induction rule also $v' \in T, w' \in T$. The goal is shown by (T23) from $vv' \in T$ and $w' \in T$.