
Universität Innsbruck SS 2008
Institut für Informatik Exercise Sheet 4
Prof. Dr. Clemens Ballarin Due 29 May 2008

Automatic Deduction — Introduction to Isabelle

LVA 703522

1 Permutations of Lists

In this exercise we consider lists (over an arbitrary element type). The cons
operation is denoted by x·xs, |xs| is the length of xs and xsi the ith element.
Permutations of lists are defined inductively by the following four rules.

([], []) ∈ Perm (Nil) (x · y · l, y · x · l) ∈ Perm (Swap)

(xs, ys) ∈ Perm

(z · xs, z · ys) ∈ Perm
(Cons)

(xs, ys) ∈ Perm (ys, zs) ∈ Perm

(xs, zs) ∈ Perm
(Trans)

The defined set Perm contains pairs of lists. In each pair the lists only
differ in the order of elements.
B State the induction rule and prove the following statements (on paper).
The induction rule consists of two bases cases and two induction steps. For
(xs, ys) ∈ Perm ⇒ P (xs, ys) for some property P one needs to show:

• Base cases:

Nil: P ([], [])

Swap: ∀x, y, l. P (x · y · l, y · x · l)

• Induction steps

Cons: ∀xs, ys, z. P (xs, ys) ⇒ P (z · xs, z · ys)

Trans: ∀xs, ys, zs. P (xs, ys) ∧ P (ys, zs) ⇒ P (xs, zs)

a) For (xs, ys) ∈ Perm holds: xs and ys have equal length.

To be shown: (xs, ys) ∈ Perm ⇒ |xs| = |ys|.
Applying the induction rule yields four statements to be shown:

Nil: |[]| = |[]|
√

Swap: |x · y · l| = |y · x · l|
√

1



Cons: Induction hypothesis: |xs| = |ys|
From this the following is immediate: |z·xs| = |xs|+1 IH= |ys|+1 =
|z · ys|.

Trans: Induction hypothesis: |xs| = |ys|, |ys| = |zs|
By transitivity of equality: |xs| = |zs|

b) For (xs, ys) ∈ Perm holds: there is a permutation π of numbers
1 . . . |xs|, such that xsi = ysπ(i) for all i = 1 . . . |xs|.
By rule induction we again obtain four statements, which are to be
shown:

Nil: There is a permutation π with []i = []π(i). This is trivial since
the list is empty.

Swap: There is a permuation π with (x · y · l)i = (y · x · l)π(i). This
holds for π = (12).

Cons: The induction hypothesis says that there exists a permutation
π with xsi = ysπ(i) for all i (from 1 to |xs|).
From this we obtain a permuation τ by setting τ(1) := 1 and
τ(i) := π(i− 1) + 1 für i > 1. We have (z · xs)i = (z · ys)τ(i).

Trans: Induction hypothesis: there is a permutation π with xsi =
ysπ(i) for all i and a permutation τ with ysi = zsτ(i) for all i.
Then τ ◦ π is also a permutation, and xsi = zsτ(π(i)).

2 Rule Induction

Formalise part of the lecture on inductive sets in Isabelle.
B Define a predicate closed f A, where f::’a set ⇒ ’a set and A::’a set.

definition closed :: "(’a set ⇒ ’a set) ⇒ ’a set ⇒ bool"
where "closed f A ≡ f A ⊆ A"

B Show closed f A ∧ closed f B =⇒ closed f (A ∩ B) if f is monotone
(the predicate mono is predefined).

lemma closed_int:
"[[ mono f; closed f A; closed f B ]] =⇒ closed f (A ∩ B)"
by (unfold closed_def mono_def) blast

B Define a function lfpt mapping f to the intersection of all f-closed sets.

definition lfpt :: "(’a set ⇒ ’a set) ⇒ ’a set"
where "lfpt f ≡

⋂
{B. closed f B}"

B Show that lfpt f is a fixed point of f if f is monotone.

2



lemma lfpt_lower: "closed f B =⇒ lfpt f ⊆ B"
by (unfold lfpt_def) auto

lemma lfpt_greatest:
assumes A_smaller: "

∧
B. closed f B =⇒ A ⊆ B"

shows "A ⊆ lfpt f"
by (unfold lfpt_def) (blast dest: A_smaller)

lemma 1:
"mono f =⇒ f (lfpt f) ⊆ lfpt f"
apply (rule lfpt_greatest)
apply (rule subset_trans)
apply (erule monoD)
apply (erule lfpt_lower)

apply (unfold closed_def)
apply assumption
done

lemma 2:
"mono f =⇒ lfpt f ⊆ f (lfpt f)"
apply (rule lfpt_lower)
apply (unfold closed_def)
apply (rule monoD, assumption)
apply (rule 1, assumption)
done

lemma lfpt_fixpoint:
"mono f =⇒ f (lfpt f) = lfpt f"
by (blast intro!: 1 2)

B Show that lfpt f is the least fixpoint of f.

lemma lfpt_least:
assumes A: "A = f A"
shows "lfpt f ⊆ A"

proof -
from A have "closed f A" by (unfold closed_def) blast
then show "lfpt f ⊆ A" by (rule lfpt_lower)

qed

B Declare a constant R::(’a set × ’a) set. This is the set of rules, which
will not be further specified here.

consts R :: "(’a set × ’a) set"

B Define Rhat::’a set ⇒ ’a set in terms of R.

definition Rhat :: "’a set ⇒ ’a set"
where "Rhat B ≡ {x. ∃ H. (H,x) ∈ R ∧ H ⊆ B}"

B Show soundness of rule induction using R and lfpt Rhat.

lemma monoRhat: "mono Rhat"

3



by (unfold mono_def Rhat_def) blast

Soundness of rule induction means that if some predicate P can be verified
by rule induction, then P holds for all elements of the set (constructed as
least fixed point).

lemma soundness:
assumes hyp: "∀ (H,x) ∈ R. ((∀ h ∈ H. P h) −→ P x)"
shows "∀ x ∈ lfpt Rhat. P x"

proof -
from hyp have "closed Rhat {x. P x}"

by (unfold closed_def Rhat_def) blast
then have "lfpt Rhat ⊆ {x. P x}" by (rule lfpt_lower)
then show ?thesis by blast

qed

3 Two Grammars

The most natural definition of valid sequences of parentheses is this:

S → ε | ′(′ S ′)′ | S S

where ε is the empty word.
A second, somewhat unusual grammar is the following one:

T → ε | T ′(′ T ′)′

B Model both grammars as inductive sets S and T and prove, on paper and
using rule inducion, S = T .

The inductive definitions are

ε ∈ S (S1)
w ∈ S

(w) ∈ S
(S2)

v ∈ S w ∈ S

vw ∈ S
(S3)

and

ε ∈ T (T1)
v ∈ T w ∈ T

v(w) ∈ T
(T23)

In order to show S = T we show that S is contained in T and T in S. The
latter is simpler, hence it is shown first.
In order to show T ⊆ S we show that for any x, x ∈ T =⇒ x ∈ S by rule
induction for the set T .

T1: ε ∈ S
√

4



T23: Induction hypothesis: v ∈ S, w ∈ S.

We need to show that v(w) ∈ S, which follows from the induction
hypothesis by the following inference:

v ∈ S

w ∈ S

(w) ∈ S
(S2)

v(w) ∈ S
(S3)

For the direction S ⊆ T we use the lemma (shown below).

v ∈ T w ∈ T

vw ∈ T
(T3)

Similar to the before, we show that for any x, x ∈ S =⇒ x ∈ T , this time
by rule induction for the set S.

S1: ε ∈ T
√

S2: Induction hypothesis: w ∈ T .

Show that (w) ∈ T . This follows from the induction hypothesis by
(T23) where v = ε.

S3: Induction hypothesis: v ∈ T,w ∈ T .

Show that vw ∈ T . Immediate with (T3).

Proof of Lemma (T3).
Following the scheme of the lecture, the induction rule for T is the theorem

x ∈ T P ε

P v P w

P v(w)
P x

By setting P x ≡ x ∈ T ∧Qx for an arbitrary predicate Q we obtain this
stronger version of the induction rule:

x ∈ T Qε

v ∈ T Qv w ∈ T Qw

Qv(w)
Qx

This is the rule that Isabelle derives. This rule is used in the proof of (T3).
We will use the additional induction hypotheses in the proof of (T3). We
show vw ∈ T by rule induction on the second premise w ∈ T :

T1 w = ε

Show vε ∈ T . This follows from the first premise v ∈ T .

5



T23 w = v′(w′)

Show vv′(w′) ∈ T . By induction hypothesis vv′ ∈ T, vw′ ∈ T . By
induction hypothesis of the stronger induction rule also v′ ∈ T,w′ ∈ T .
The goal is shown by (T23) from vv′ ∈ T and w′ ∈ T .

6


	Permutations of Lists
	Rule Induction
	Two Grammars

