LVA 703522

1 Two Grammars

The most natural definition of valid sequences of parentheses is this:

$$
S \rightarrow \epsilon\left|{ }^{\prime}\left({ }^{\prime} S^{\prime}\right)^{\prime} \quad\right| \quad S S
$$

where ϵ is the empty word.
A second, somewhat unusual grammar is the following one:

$$
T \rightarrow \epsilon \mid \quad T^{\prime}\left(T^{\prime} T^{\prime}\right)^{\prime}
$$

\triangleright Make the definitions of sets S and T in Isabelle and give structured Isar proofs leading to the theorem $\mathrm{S}=\mathrm{T}$.
Hint: use lists over a specific type to repesent words.
The alphabet:
datatype alpha $=\mathrm{A} \mid \mathrm{B}$
Standard grammar:

```
inductive_set S :: "alpha list set"
    where
        S1: "[] \in S"
    | S2: "w \in S C [A] @ w @ [B] \in S"
    | S3: "v \in S \Longrightarrow w \inS C v @ w \in S"
```

Nonstandard grammar:

```
inductive_set T :: "alpha list set"
    where
        T1: "[] \in T"
    | T23: "v \in T > w \in T \Longrightarrow v @ ([A] @ w @ [B]) \in T"
```

Equivalence proof
lemma T_in_S: "w $\in T \Longrightarrow w \in S "$
proof (induct set: T)
case T1
show " []$\in S$ " by (rule S1)
next

```
    case (T23 v w)
    have "v \in S" .
    moreover
    {
    have "w \in S" .
    then have "[A] @ w @ [B] \in S" by (rule S2)
    }
    ultimately
    show "v @ ([A] @ w @ [B]) \in S" by (rule S3)
qed
lemma T2: "w \in T \Longrightarrow [A] @ w @ [B] \in T"
proof -
    have "[] \in T" by (rule T1)
    moreover assume "w \in T"
    ultimately have "[] @ ([A] @ w @ [B]) \in T" by (rule T23)
    then show ?thesis by simp
qed
lemma T3:
    assumes u: "u \in T"
        and v: "v 隹"
    shows "u @ v \in T"
    using v
proof induct
    case T1
    from u show "u @ [] \in T" by simp
next
    case (T23 v w)
    have "u @ v \in T" .
    moreover have "w \in T" .
    ultimately have "(u @ v) @ ([A] @ w @ [B]) \in T" by (rule T.T23)
    then show "u @ (v @ [A] @ w @ [B]) \in T" by simp
qed
lemma S_in_T: "w \inS \Longrightarrow w \in T"
proof (induct set: S)
    case S1
    show "[] \in T" by (rule T1)
next
    case (S2 w)
    have "w \in T" .
    then show "[A] @ w @ [B] \in T" by (rule T2)
next
    case (S3 v w)
    have "v \in T" and "w & T".
    then show "v @ w \in T" by (rule T3)
qed
```


theorem "S = T"

using S_in_T T_in_S by blast

2 Polynomial sums

\triangleright Produce structured proofs of the following theorems, using induction and calculational reasoning in Isar.
Note that the given tactic scripts are of limited use in reconstructing structured proofs; nevertheless the hints of automated steps below can be re-used to finish sub-problems. The \sum symbol can be entered as " \backslash <Sum>"; note that numerals in Isabelle/HOL are polymorphic.

```
theorem - problem
    fixes n : : nat
    shows " \(2 *\left(\sum \mathrm{i}=0 . . \mathrm{n} . \mathrm{i}\right)=\mathrm{n} *(\mathrm{n}+1) \mathrm{l}\)
    by (induct n) simp_all
theorem - solution
    fixes n : : nat
    shows " \(2 *\left(\sum \mathrm{i}=0 . . \mathrm{n} . \mathrm{i}\right)=\mathrm{n} *(\mathrm{n}+1)\) "
proof (induct n )
    case 0
    have " 2 * ( \(\sum \mathrm{i}=0.0 . \mathrm{i}\) ) = (0: :nat)" by simp
    also have " (0::nat) = 0 * ( \(0+1\) ) " by simp
    finally show ?case .
next
    case (Suc n)
    have " 2 * ( \(\sum \mathrm{i}=0 .\). Suc n. i) \(=2\) * ( \(\sum \mathrm{i}=0 . . \mathrm{n}\). i\()+2\) ( \(\mathrm{n}+1\) )" by simp
    also have " \(2 *\left(\sum \mathrm{i}=0 . \mathrm{n} . \mathrm{i}\right)=\mathrm{n} *(\mathrm{n}+1) \mathrm{l}\) by (rule Suc.hyps)
    also have \(n *(\mathrm{n}+1)+2 *(\mathrm{n}+1)=\operatorname{Suc} \mathrm{n} *(\) Suc \(\mathrm{n}+1)\) " by simp
    finally show ?case .
qed
theorem - problem
    fixes n : : nat
    shows " \(\sum \mathrm{i}=0 . .<\mathrm{n} .2 * i+1\) ) \(=\mathrm{n}^{2}\) "
    by (induct \(n\) ) (simp_all add: power_eq_if nat_distrib)
theorem - solution
    fixes \(n\) : : nat
    shows " \(\left(\sum \mathrm{i}=0 . .<\mathrm{n} .2 * \mathrm{i}+1\right)=\mathrm{n}^{2}\) "
proof (induct \(n\) )
    case 0
    have "( \(\sum \mathrm{i}=0 . .<0.2\) * \(\mathrm{i}+1\) ) = ( \(0:\) :nat)" by simp
    also have " (0: nat) \(=0^{2}\) " by simp
    finally show ?case .
next
    case (Suc n)
```

```
    have "(\sumi=0..<Suc n. 2 * i + 1) = (\sumi=0..<n. 2 * i + 1) + 2 * n +
1"
            by simp
    also have "(\sumi=0..<n. 2 * i + 1) = n'"
        by (rule Suc.hyps)
    also have " n^2 + 2* n + 1 = (Suc n) 2"
        by (simp add: power_eq_if nat_distrib)
    finally show ?case .
qed
theorem - problem
    fixes n :: nat
    shows "(\sumi=0..<n. 2^i) = 2^n - (1::nat)"
    by (induct n) (simp_all split: nat_diff_split)
theorem - solution
    fixes n :: nat
    shows "(\sumi=0..<n. 2^i) = 2^n - (1::nat)"
proof (induct n)
    case 0
    have "(\sumi=0..<0. 2^i) = (0::nat)" by simp
    also have "(0::nat) = 2^0 - (1::nat)" by simp
    finally show ?case .
next
    case (Suc n)
    have "(\sumi=0..<Suc n. 2^i) = (\sum i=0..<n. 2^i) + 2^n"
        by simp
    also have "(\sumi=0..<n. 2^i) = 2^n - (1::nat)"
        by (rule Suc.hyps)
    also have "(2^n - (1::nat)) + 2^n = 2^(Suc n) - (1::nat)"
        by (simp split: nat_diff_split)
    finally show ?case .
qed
theorem - problem
    fixes n :: nat
    shows "2 * (\sumi=0..<n. 3^i) = 3^n - (1::nat)"
    by (induct n) (simp_all add: nat_distrib)
theorem - solution
    fixes n :: nat
    shows "2 * (\sumi=0..<n. 3^i) = 3^n - (1::nat)"
proof (induct n)
    case 0
    have "2 * (\sumi=0..<0. 3^i) = (0::nat)" by simp
    also have "(0::nat) = 3^0 - (1::nat)" by simp
    finally show ?case .
next
    case (Suc n)
```

```
    have "(2::nat) * (\sumi=0..<Suc n. 3^i) = 2 * (\sumi=0..<n. 3^i) + 2*
3^n"
    by (simp add: nat_distrib)
    also have "2 * (\sum i=0..<n. 3^i) = 3^n - (1::nat)"
        by (rule Suc.hyps)
    also have "(3^n - 1) + 2 * 3^n = 3^(Suc n) - (1::nat)"
        by simp
    finally show ?case .
qed
theorem - problem
    fixes n :: nat
    assumes k: "0 < k"
    shows "(k - 1) * (\sumi=0..<n. k^i) = k^n - (1::nat)"
    by (induct n) (insert k, simp_all add: nat_distrib)
theorem - solution
    fixes n :: nat
    assumes k: "0 < k"
    shows "(k - 1) * (\sumi=0..<n. k^i) = k^n - (1::nat)"
proof (induct n)
    case 0
    have "(k - 1) * (\sum i=0..<0. k^i) = (0::nat)" by simp
    also have "(0::nat) = k^0 - (1::nat)" by simp
    finally show ?case .
next
    case (Suc n)
    have "(k - 1) * (\sum i=0..<Suc n. k^i) =
            (k - 1) * (\sum i=0..<n. k^i) + (k - 1) * k^n"
        using k by (simp add: nat_distrib)
    also have "(k - 1) * (\sumi=0..<n. k^i) = k^n - (1::nat)"
        by (rule Suc.hyps)
    also have "(k^n - 1) + (k - 1) * k^n = k^(Suc n) - (1::nat)"
        using k by (simp add: nat_distrib)
    finally show ?case .
qed
```

