Automatic Deduction — Introduction to Isabelle LVA 703522

1 Two Grammars

The most natural definition of valid sequences of parentheses is this:

where ϵ is the empty word.

A second, somewhat unusual grammar is the following one:

 $T \rightarrow \epsilon \mid T'(T')'$

 \triangleright Make the definitions of sets S and T in Isabelle and give structured Isar proofs leading to the theorem S = T.

Hint: use lists over a specific type to repesent words.

The alphabet:

datatype alpha = A | B Standard grammar: inductive_set S :: "alpha list set" where S1: "[] \in S" | S2: "w \in S \Longrightarrow [A] @ w @ [B] \in S" | S3: "v \in S \Longrightarrow w \in S \Longrightarrow v @ w \in S" Nonstandard grammar: inductive_set T :: "alpha list set"

where T1: "[] \in T" | T23: "v \in T \implies w \in T \implies v @ ([A] @ w @ [B]) \in T" Equivalence proof lemma T_in_S: "w \in T \implies w \in S" proof (induct set: T) case T1 show "[] \in S" by (rule S1) next

```
case (T23 v w)
  have "\mathtt{v} \in \mathtt{S}" .
  moreover
  {
    have "\texttt{w} \in \texttt{S"} .
    then have "[A] 0 w 0 [B] \in S" by (rule S2)
  }
  ultimately
  show "v @ ([A] @ w @ [B]) \in S" by (rule S3)
qed
lemma T2: "w \in T \implies [A] @ w @ [B] \in T"
proof -
  have "[] \in T" by (rule T1)
  moreover assume "w \in T"
  ultimately have "[] @ ([A] @ w @ [B]) \in T" by (rule T23)
  then show ?thesis by simp
qed
lemma T3:
  assumes u: "u \in T"
    and v: "v \in T"
  shows "u 0 v \in T"
  using v
proof induct
  case T1
  from u show "u @ [] \in T" by simp
\mathbf{next}
  case (T23 v w)
  have "u 0 v \in T" .
  moreover have "\texttt{w} \in \texttt{T}" .
  ultimately have "(u @ v) @ ([A] @ w @ [B]) \in T" by (rule T.T23)
  then show "u @ (v @ [A] @ w @ [B]) \in T" by simp
qed
lemma S_in_T: "w \in S \implies w \in T"
proof (induct set: S)
  case S1
  show "[] \in T" by (rule T1)
\mathbf{next}
  case (S2 w)
  have "w \in T" .
  then show "[A] O w O [B] \in T" by (rule T2)
next
  case (S3 v w)
  have "\mathtt{v} \in \mathtt{T}" and "\mathtt{w} \in \mathtt{T}" .
  then show "v @ w \in T" by (rule T3)
\mathbf{qed}
```

theorem "S = T"
 using S_in_T T_in_S by blast

2 Polynomial sums

 \triangleright Produce structured proofs of the following theorems, using induction and calculational reasoning in Isar.

Note that the given tactic scripts are of limited use in reconstructing structured proofs; nevertheless the hints of automated steps below can be re-used to finish sub-problems. The \sum symbol can be entered as "\<Sum>"; note that numerals in Isabelle/HOL are polymorphic.

```
theorem — problem
  fixes n :: nat
  shows "2 * (\sum i=0..n. i) = n * (n + 1)"
  by (induct n) simp_all
theorem — solution
  fixes n :: nat
  shows "2 * (\sum i=0..n. i) = n * (n + 1)"
proof (induct n)
  \mathbf{case} \ \mathbf{0}
  have "2 * (\sum i=0..0. i) = (0::nat)" by simp
  also have "(0::nat) = 0 * (0 + 1)" by simp
  finally show ?case .
\mathbf{next}
  case (Suc n)
  have "2 * (\sum i=0..Suc n. i) = 2 * (\sum i=0..n. i) + 2 * (n + 1)" by simp
  also have "2 * (\sum i=0..n. i) = n * (n + 1)" by (rule Suc.hyps)
  also have "n * (n + 1) + 2 * (n + 1) = Suc n * (Suc n + 1)" by simp
  finally show ?case .
qed
theorem — problem
  fixes n :: nat
  shows "(\sum i=0..<n. 2 * i + 1) = n^2"
  by (induct n) (simp_all add: power_eq_if nat_distrib)
theorem — solution
  fixes n :: nat
  shows "(\sum i=0..<n. 2 * i + 1) = n^2"
proof (induct n)
  case 0
  have "(\sum_{i=0..<0.} 2 * i + 1) = (0::nat)" by simp
  also have "(0::nat) = 0^2" by simp
  finally show ?case .
next
  case (Suc n)
```

```
have "(\sum i=0...\leq uc n. 2 * i + 1) = (\sum i=0...\leq n. 2 * i + 1) + 2 * n + 1)
1"
    by simp
  also have "(\sum i=0..<n. 2 * i + 1) = n^2"
    by (rule Suc.hyps)
  also have "n<sup>2</sup> + 2 * n + 1 = (Suc n)<sup>2</sup>"
    by (simp add: power_eq_if nat_distrib)
  finally show ?case .
qed
theorem — problem
  fixes n :: nat
  shows "(\sum i=0..<n. 2^{i}) = 2^{n} - (1::nat)"
  by (induct n) (simp_all split: nat_diff_split)
theorem — solution
  fixes n :: nat
  shows "(\sum i=0..<n. 2^{i}) = 2^{n} - (1::nat)"
proof (induct n)
  \mathbf{case} \ \mathbf{0}
  have "(\sum i=0..<0. 2^{i}) = (0::nat)" by simp
  also have "(0::nat) = 2^0 - (1::nat)" by simp
  finally show ?case .
\mathbf{next}
  case (Suc n)
  have "(\sum i=0..<Suc n. 2^i) = (\sum i=0..<n. 2^i) + 2^n"
    by simp
  also have "(\sum i=0..<n. 2^{i}) = 2^n - (1::nat)"
    by (rule Suc.hyps)
  also have "(2<sup>n</sup> - (1::nat)) + 2<sup>n</sup> = 2<sup>(Suc n)</sup> - (1::nat)"
    by (simp split: nat_diff_split)
  finally show ?case .
\mathbf{qed}
theorem — problem
  fixes n :: nat
  shows "2 * (\sum i=0..<n. 3^{i}) = 3^n - (1::nat)"
  by (induct n) (simp_all add: nat_distrib)
theorem — solution
  fixes n :: nat
  shows "2 * (\sum i=0..<n. 3^{i}) = 3<sup>n</sup> - (1::nat)"
proof (induct n)
  case 0
  have "2 * (\sum i=0..<0. 3^{i}) = (0::nat)" by simp
  also have "(0::nat) = 3<sup>0</sup> - (1::nat)" by simp
  finally show ?case .
\mathbf{next}
  case (Suc n)
```

```
have "(2::nat) * (\sum i=0.. (Suc n. 3<sup>i</sup>) = 2 * (\sum i=0.. (n. 3<sup>i</sup>) + 2 *
3^n"
    by (simp add: nat_distrib)
  also have "2 * (\sum i=0..<n. 3^{i}) = 3^n - (1::nat)"
    by (rule Suc.hyps)
  also have "(3<sup>n</sup> - 1) + 2 * 3<sup>n</sup> = 3<sup>(Suc n)</sup> - (1::nat)"
    by simp
  finally show ?case .
qed
theorem — problem
  fixes n :: nat
  assumes k: "0 < k"
  shows "(k - 1) * (\sum i=0..<n. k^i) = k^n - (1::nat)"
  by (induct n) (insert k, simp_all add: nat_distrib)
\mathbf{theorem} — solution
  fixes n :: nat
  assumes k: "0 < k"
  shows "(k - 1) * (\sum i=0..<n. k^i) = k^n - (1::nat)"
proof (induct n)
  \mathbf{case} \ \mathbf{0}
  have "(k - 1) * (\sum i=0..<0. k^i) = (0::nat)" by simp
  also have "(0::nat) = k^0 - (1::nat)" by simp
  finally show ?case .
\mathbf{next}
  case (Suc n)
  have "(k - 1) * (\sum i=0.. Suc n. k^i) =
      (k - 1) * (\sum i=0..< n. k^i) + (k - 1) * k^n"
    using k by (simp add: nat_distrib)
  also have "(k - 1) * (\sum i=0..<n. k^i) = k^n - (1::nat)"
    by (rule Suc.hyps)
  also have "(k^n - 1) + (k - 1) * k^n = k^(Suc n) - (1::nat)"
    using k by (simp add: nat_distrib)
  finally show ?case .
qed
```