theory Demo03 imports Main begin section{* Propositional logic *} subsection{* Basic rules *} text{* \ *} thm conjI conjE text{* \ *} thm disjI1 disjI2 disjE text{* \ *} thm impI impE subsection{* Examples *} text{* a simple backward step: *} lemma "A \ B" thm conjI apply(rule conjI) oops text{* a simple backward proof: *} lemma "B \ A \ A \ B" apply(rule impI) apply(erule conjE) apply(rule conjI) apply(assumption) apply(assumption) done lemma "A \ B \ B \ A" apply (rule impI) apply (erule disjE) apply (rule disjI2) apply assumption apply (rule disjI1) apply assumption done lemma "\ A \ B; B \ C \ \ A \ C" apply (rule impI) apply (erule impE) apply assumption apply (erule impE) apply assumption apply assumption done thm notI notE lemma "\A \ \B \ \(A \ B)" apply (rule notI) apply (erule disjE) apply (erule conjE) apply (erule notE) apply assumption apply (erule conjE) apply (erule notE) apply assumption done text{* Explicit backtracking: *} lemma "\ P \ Q; A \ B \ \ A" apply(erule conjE) back apply(assumption) done text{* Ugly! Avoid in finished proofs. *} text{* Implict backtracking: chaining with , *} lemma "\ P \ Q; A \ B \ \ A" apply(erule conjE, assumption) done text {* Case distinctions *} lemma "P \ \P" apply (case_tac "P") oops thm FalseE lemma "(\P \ False) \ P" apply (rule impI) apply (case_tac "P") apply assumption apply (erule impE) apply assumption apply (erule FalseE) done -- --------------------------------------- subsection {* more rules *} text{* \ *} thm conjunct1 conjunct2 text{* \ *} thm disjCI text{* \ *} thm mp text{* = (iff) *} thm iffI iffE iffD1 iffD2 text{* Equality *} thm refl sym trans text{* \ *} thm notI notE text{* Contradictions *} thm FalseE ccontr classical excluded_middle text{* = (iff) *} thm iffI iffE iffD1 iffD2 text{* Equality *} thm refl sym trans text {* defer and prefer *} lemma "(A \ A) = (A \ A)" apply (rule iffI) defer sorry text{* A warming up exercise: classical propositional logic. *} lemma Pierce: "((A \ B) \ A) \ A" sorry -- -------------------------------------- section {* Quantifier reasoning *} text{* A successful proof: *} lemma "\x. \y. x = y" apply(rule allI) apply(rule exI) apply(rule refl) done text{* An unsuccessful proof: *} lemma "\y. \x. x = y" apply(rule exI) apply(rule allI) (* Does not work: apply(rule refl) *) oops text{* Intro and elim resoning: *} lemma "\y. \x. P x y \ \x. \y. P x y" (* the safe rules first: *) apply(rule allI) apply(erule exE) (* now the unsafe ones: *) apply(rule_tac x=y in exI) apply(erule_tac x=x in allE) apply(assumption) done text{* What happens if an unsafe rule is tried too early: *} lemma "\y. \x. P x y \ \x. \y. P x y" apply(rule allI) apply(rule exI) apply(erule exE) apply(erule allE) (* doesn't work apply(assumption) *) oops text {* Instantiation in more detail: *} text{* Instantiating allE: *} lemma "\x. P x \ P 37" thm allE apply (erule_tac x = "37" in allE) apply assumption done text{* Instantiating exI: *} lemma "\n. P (f n) \ \m. P m" apply(erule exE) thm exI apply(rule_tac x = "f n" in exI) apply assumption done text{* Instantiation removes ambiguity: *} lemma "\ A \ B; C \ D \ \ D" thm conjE apply(erule_tac P = "C" in conjE) (* without instantiation, the wrong one is chosen (first) *) apply assumption done text {* Instantiation with "where" and "of" *} text {* May not refer to parameters of the goal. *} thm conjI thm conjI [of A B] thm conjI [where Q = "f x"] lemma "\x. x = x" apply (rule allI) thm refl [where t = x] (* doesn't work apply (rule refl [where t = x]) *) oops text {* Exercises *} lemma "\x. \y. P x y \ \y. \x. P x y" oops lemma "(\x. P x) \ Q \ \x. P x \ Q" oops lemma "\x. (P x \ (\x. P x))" oops -- ---------------------------------------------- text{* Renaming parameters: *} lemma "\x y z. P x y z" apply(rename_tac a b) oops lemma "\x. P x \ \x. \x. P x" apply(rule allI) apply(rule allI) apply(rename_tac X) apply(erule_tac x=X in allE) apply assumption done text {* Forward reasoning: drule/frule/OF/THEN*} lemma "A \ B \ \ \ A" thm conjunct1 apply (drule conjunct1) apply (rule notI) apply (erule notE) apply assumption done lemma "\x. P x \ P t" thm spec apply (frule spec) apply assumption done thm dvd_add dvd_refl thm dvd_add [OF dvd_refl] thm dvd_add [OF dvd_refl dvd_refl] -- --------------------------------------------- text {* Epsilon *} lemma "(\x. P x) = P (SOME x. P x)" apply (rule iffI) apply (erule exE) apply (rule someI) apply assumption apply (rule exI) apply assumption done text {* Automation *} lemma "\x y. P x y \ Q x y \ R x y" apply (intro allI conjI) oops lemma "\x y. P x y \ Q x y \ R x y" apply clarify oops lemma "\x y. P x y \ Q x y \ R x y" apply safe oops lemma "\y. \x. P x y \ \x. \y. P x y" apply blast done lemma "\y. \x. P x y \ \x. \y. P x y" apply fast done -- --------------------------------------------- text {* Attributes *} definition xor :: "bool \ bool \ bool" where "xor A B \ (A \ \B) \ (\A \ B)" lemma xorI [intro!]: "\ \A; B\ \ False; \B \ A \ \ xor A B" apply (unfold xor_def) apply blast done lemma xorE: "\ xor A B; \A; \B\ \ R; \\A; B\ \ R \ \ R" apply (unfold xor_def) apply blast done lemma "xor A A = False" by (blast elim!: xorE) declare xorE [elim!] lemma "xor A B = xor B A" by blast end