
Automatic Deduction — LV 703522
Introduction to Isabelle

Clemens Ballarin

Universität Innsbruck

λ →

∀
=Isa

be
lle

β

α Intro

Organisatorials

Web Page

http://cl-informatik.uibk.ac.at/teaching/ss08

Installation

I Installed on zid-gpl, type Isabelle &

I We will use Isabelle 2007.

General Schedule

I Lectures

I Homework

I Exercise sessions where homework will be discussed

Isabelle — Intro Clemens Ballarin

http://cl-informatik.uibk.ac.at/teaching/ss08

What You Will Learn

I How to use a theorem prover

I Background, how it works

I How to prove and specify

Health Warning

Theorem Proving is addictive

Isabelle — Intro Clemens Ballarin

Contents

I Intro & motivation, getting started with Isabelle

I Foundations & Principles
I Lambda Calculus
I Types & Classes
I Natural Deduction
I Term rewriting

I Proof & Specification Techniques
I Isar: mathematics style proofs
I Inductively defined sets, rule induction
I Datatypes, structural induction
I Recursive functions & code generation

Isabelle — Intro Clemens Ballarin

Contents

I Intro & motivation, getting started with Isabelle

I Foundations & Principles
I Lambda Calculus
I Types & Classes
I Natural Deduction
I Term rewriting

I Proof & Specification Techniques
I Isar: mathematics style proofs
I Inductively defined sets, rule induction
I Datatypes, structural induction
I Recursive functions & code generation

Isabelle — Intro Clemens Ballarin

Schedule

6 Mar Introduction
13 Mar λ-calculus 3 April Exercises
10 April Higher-Order Logic 17 April ”
24 April Rewriting 8 May ”
15 May ISAR 29 May ”
5 June Sets and inductive definitions 12 June ”

19 June HOL as programming language 26 June ”
3 July Exam

Isabelle — Intro Clemens Ballarin

Introduction

Isabelle — Intro Clemens Ballarin

What is a Proof?

To prove (Merriam-Webster)

1. from Latin probare (test, approve, prove)

2. to learn or find out by experience (archaic)

3. to establish the existence, truth, or validity of
(by evidence or logic)
Prove a theorem; the charges were never proved in court

Pops up everywhere

I politics (weapons of mass destruction)

I courts (beyond reasonable doubt)

I religion (god exists)

I science (cold fusion works)

Isabelle — Intro Clemens Ballarin

What is a Mathematical Proof?

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true.

(Wikipedia)

Example:
√

2 is not rational.

Proof. Assume there is r ∈ Q such that r2 = 2.
Hence there are mutually prime p and q with r = p

q .

Thus 2q2 = p2, i.e. p2 is divisible by 2.
2 is prime, hence it also divides p, i.e. p = 2s.
Substituting this into 2q2 = p2 and dividing by 2 gives q2 = 2s2.
Hence, q is also divisible by 2. Contradiction. Qed.

Isabelle — Intro Clemens Ballarin

Nice, but...

I Still not rigourous enough for some
I What are the axioms?
I What are the rules?
I How big can the steps be?
I What is obvious or trivial?

I Informal language, easy to get wrong,

I easy to miss something, easy to cheat.

Theorem. A cat has nine tails.

Proof. No cat has eight tails.
One cat has one more tail than no cat.
Hence it must have nine tails.

Isabelle — Intro Clemens Ballarin

What is a Formal Proof?
A derivation in a formal calculus

Example

A ∧B −→ B ∧A derivable in the following system:

X ∈ S

S ` X
(assumption)

S ∪ {X} ` Y

S ` X −→ Y
(impI)

S ` X S ` Y

S ` X ∧ Y
(conjI)

S ∪ {X, Y } ` Z

S ∪ {X ∧ Y } ` Z
(conjE)

Proof
1. {A,B} ` B (by assumption)
2. {A,B} ` A (by assumption)
3. {A,B} ` B ∧A (by conjI with 1 and 2)
4. {A ∧B} ` B ∧A (by conjE with 3)
5. {} ` A ∧B −→ B ∧A (by impI with 4)

Isabelle — Intro Clemens Ballarin

What is a Theorem Prover?

Implementation of a formal logic on a computer

I Fully automated (propositional logic)

I Automated, but not necessarily terminating
(first-order logic)

I With automation, but mainly interactive
(higher-order logic)

I Based on rules and axioms

I Can deliver proofs

There are other (algorithmic) verification tools:

I Model checking, static analysis, ...

I Usually do not deliver proofs

Isabelle — Intro Clemens Ballarin

Why Theorem Proving?

I Analysing systems/programs thoroughly

I Finding design and specification errors early

I High assurance (machine checked)

I Can communicate proof for checking by others

I It’s not always easy

I It’s fun

Isabelle — Intro Clemens Ballarin

Isabelle

A generic interactive proof assistant
λ →

∀
=Isa

be
lle

β

α

I Generic:
not specialised to one particular logic
(two large developments: HOL and ZF, will use HOL)

I Interactive:
more than just yes/no, you can interactively guide the system

I Proof assistant:
helps to explore, find, and maintain proofs

Isabelle — Intro Clemens Ballarin

The Heads behind Isabelle

Larry Paulson Tobias Nipkow Markus Wenzel

Isabelle — Intro Clemens Ballarin

Why Isabelle?

I Free

I Widely used systems

I Active development

I High expressiveness and automation

I Reasonably easy to use

I and because we know it best ;-)

Isabelle — Intro Clemens Ballarin

If I prove it on the computer, it is correct, right?

Isabelle — Intro Clemens Ballarin

If I Prove It on the Computer, It Is Correct, Right?

No, because:

1. Hardware could be faulty

2. Operating system could be faulty

3. Implementation runtime system could be faulty

4. Compiler could be faulty

5. Implementation of prover could be faulty

6. Logic could be inconsistent

7. Theorem could mean something else

Isabelle — Intro Clemens Ballarin

If I Prove It on the Computer, It Is Correct, Right?

No, but:
Probability for

I 1 and 2 reduced by using different systems

I 3 and 4 reduced by using different compilers

I Faulty implementation reduced by right architecture

I Inconsistent logic reduced by implementing & analysing it

I Wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than with manual
proof.

Isabelle — Intro Clemens Ballarin

If I Prove It on the Computer, It Is Correct, Right?

Soundness architectures

Careful implementation PVS

LCF approach, small proof kernel HOL4
Isabelle

Explicit proofs + proof checker Coq
Twelf
Isabelle

Isabelle — Intro Clemens Ballarin

Meta Logic

Meta language

The language used to talk about another language.

Examples

German in a Spanish class, English in an English class.

Meta logic

The logic used to formalize another logic.

Example

Mathematics used to formalize derivations in formal logic.

Isabelle — Intro Clemens Ballarin

Meta Logic — Example

Syntax
Formulae: F ::= V | F −→ F | F ∧ F | False

V ::= [A− Z]

Derivability: S ` X where X a formula, S a set of formulae

Logic vs. meta logic

X ∈ S

S ` X

S ∪ {X} ` Y

S ` X −→ Y

S ` X S ` Y

S ` X ∧ Y

S ∪ {X,Y } ` Z

S ∪ {X ∧ Y } ` Z

Isabelle — Intro Clemens Ballarin

Isabelle’s Meta Logic

∧
=⇒ λ ≡

Isabelle — Intro Clemens Ballarin

∧

Syntax
∧

x. F (F another meta level formula)
in ASCII !!x. F

I Universal quantifier at the meta level

I Used to denote parameters

I Example and more later

Isabelle — Intro Clemens Ballarin

=⇒

Syntax A =⇒ B (A,B other meta level formulae)
in ASCII A ==> B

Binds to the right

A =⇒ B =⇒ C = A =⇒ (B =⇒ C)

Abbreviation

[[A;B]] =⇒ C = A =⇒ B =⇒ C

I Read: A and B implies C

I Used to write rules, theorems, and proof states

Isabelle — Intro Clemens Ballarin

Example: a Theorem

Mathematics if x < 0 and y < 0, then x + y < 0

Formal logic ` x < 0 ∧ y < 0 −→ x + y < 0
variation {x < 0; y < 0} ` x + y < 0

Isabelle lemma ”x < 0 ∧ y < 0 −→ x + y < 0”
variation lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”
variation lemma

assumes ”x < 0” and ”y < 0”
shows ”x + y < 0”

Isabelle — Intro Clemens Ballarin

Example: a Rule

Logic
X Y

X ∧ Y

variation
S ` X S ` Y

S ` X ∧ Y

Isabelle [[X;Y]] =⇒ X ∧ Y

Isabelle — Intro Clemens Ballarin

Example: a Rule with Nested Implication

Logic
X ∨ Y

X

Z

...

Y

Z

...

Z

variation
S ∪ {X} ` Z S ∪ {Y } ` Z

S ∪ {X ∨ Y } ` Z

Isabelle [[X ∨ Y ;X =⇒ Z;Y =⇒ Z]] =⇒ Z

Isabelle — Intro Clemens Ballarin

λ

Syntax λx. F (F another meta level formula)
in ASCII %x. F

I Lambda abstraction

I Used for functions in object logics

I Used to encode bound variables in object logics

I More about this in the next lecture

Isabelle — Intro Clemens Ballarin

System Architecture

Proof General – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

Isabelle — Intro Clemens Ballarin

System Requirements

I Linux, FreeBSD, MacOS X or Solaris

I Standard ML
(PolyML fastest, SML/NJ supports more platforms)

I XEmacs or Emacs
(for ProofGeneral)

Isabelle — Intro Clemens Ballarin

Documentation

Available from http://isabelle.in.tum.de
I Learning Isabelle

I Tutorial on Isabelle/HOL (LNCS 2283)
I Tutorial on Isar
I Tutorials for various packages

I Reference Manuals
I Isabelle/Isar Reference Manual
I Isabelle Reference Manual
I Isabelle System Manual

I Reference Manuals for Object-Logics

Isabelle — Intro Clemens Ballarin

http://isabelle.in.tum.de

ProofGeneral

I User interface for Isabelle

I Runs under XEmacs or Emacs

I Isabelle process in background

Interaction via

I Basic editing in XEmacs (with highlighting etc)

I Buttons (tool bar)

I Key bindings

I ProofGeneral Menu (lots of options, try them)

Isabelle — Intro Clemens Ballarin

X-Symbol Cheat Sheet

Input of funny symbols in ProofGeneral

I via menu (“X-Symbol”)

I via ASCII encoding (similar to LATEX): \<and>, \<or>, . . .

I via abbreviation: /\, \/, -->, . . .

I via rotate: l C-. = λ (cycles through variations of letter)

∀ ∃ λ ¬ ∧ ∨ −→ ⇒
1. \<forall> \<exists> \<lambda> \<not> /\ \/ --> =>
2. ALL EX % ~ & |

1. converted to X-Symbol
2. stays ASCII

For more symbols, see LNCS 2283, Appendix 1.

Isabelle — Intro Clemens Ballarin

Demo

Isabelle — Intro Clemens Ballarin

	Introduction
	Demo
	Document Generation

