Automatic Deduction — LV 703522 Introduction to Isabelle

Clemens Ballarin Universität Innsbruck

Intro

Organisatorials

Web Page http://cl-informatik.uibk.ac.at/teaching/ss08

Installation

- Installed on zid-gpl, type Isabelle &
- ► We will use Isabelle 2007.

General Schedule

- Lectures
- Homework
- Exercise sessions where homework will be discussed

Isabelle — Intro

What You Will Learn

- How to use a theorem prover
- Background, how it works
- How to prove and specify

Health Warning Theorem Proving is addictive

Isabelle — Intro

Contents

- Intro & motivation, getting started with Isabelle
- Foundations & Principles
 - Lambda Calculus
 - Types & Classes
 - Natural Deduction
 - Term rewriting
- Proof & Specification Techniques
 - Isar: mathematics style proofs
 - Inductively defined sets, rule induction
 - Datatypes, structural induction
 - Recursive functions & code generation

Contents

- Intro & motivation, getting started with Isabelle
- Foundations & Principles
 - Lambda Calculus
 - Types & Classes
 - Natural Deduction
 - Term rewriting
- Proof & Specification Techniques
 - Isar: mathematics style proofs
 - Inductively defined sets, rule induction
 - Datatypes, structural induction
 - Recursive functions & code generation

Schedule

6 Mar	Introduction	
13 Mar	λ -calculus	
10 April	Higher-Order Logic	1
24 April	Rewriting	
15 May	ISAR	
5 June	Sets and inductive definitions	-
19 June	HOL as programming language	
3 July	Exam	

3 April	Exercises
17 April	"
8 May	"
29 May	"
12 June	"
26 June	"

Introduction

Isabelle — Intro

What is a Proof?

To prove

(Merriam-Webster)

- 1. from Latin probare (test, approve, prove)
- 2. to learn or find out by experience (archaic)
- 3. to establish the existence, truth, or validity of (by evidence or logic)Prove a theorem; the charges were never proved in court

Pops up everywhere

- politics (weapons of mass destruction)
- courts (beyond reasonable doubt)
- religion (god exists)
- science (cold fusion works)

In mathematics, a proof is a demonstration that, given certain axioms, some statement of interest is necessarily true.

(Wikipedia)

Example: $\sqrt{2}$ is not rational.

Proof. Assume there is $r \in \mathbb{Q}$ such that $r^2 = 2$. Hence there are mutually prime p and q with $r = \frac{p}{q}$. Thus $2q^2 = p^2$, i.e. p^2 is divisible by 2. 2 is prime, hence it also divides p, i.e. p = 2s. Substituting this into $2q^2 = p^2$ and dividing by 2 gives $q^2 = 2s^2$. Hence, q is also divisible by 2. Contradiction. Qed.

Isabelle — Intro

Nice, but...

Still not rigourous enough for some

- What are the axioms?
- What are the rules?
- How big can the steps be?
- What is obvious or trivial?
- Informal language, easy to get wrong,
- easy to miss something, easy to cheat.

Theorem. A cat has nine tails.

Proof. No cat has eight tails.One cat has one more tail than no cat.Hence it must have nine tails.

What is a Formal Proof?

A derivation in a formal calculus

Example

 $A \wedge B \longrightarrow B \wedge A$ derivable in the following system:

$$\frac{X \in S}{S \vdash X} \text{ (assumption)} \qquad \frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y} \text{ (impl)}$$
$$\frac{S \vdash X \qquad S \vdash Y}{S \vdash X \land Y} \text{ (conjl)} \qquad \frac{S \cup \{X,Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z} \text{ (conjE)}$$

Proof(by assumption)1.
$$\{A, B\} \vdash B$$
(by assumption)2. $\{A, B\} \vdash A$ (by assumption)3. $\{A, B\} \vdash B \land A$ (by conjl with 1 and 2)4. $\{A \land B\} \vdash B \land A$ (by conjE with 3)5. $\{\} \vdash A \land B \longrightarrow B \land A$ (by impl with 4)

Isabelle — Intro

What is a Theorem Prover?

Implementation of a formal logic on a computer

- Fully automated (propositional logic)
- Automated, but not necessarily terminating

(first-order logic)

With automation, but mainly interactive

(higher-order logic)

- Based on rules and axioms
- Can deliver proofs

There are other (algorithmic) verification tools:

- Model checking, static analysis, ...
- Usually do not deliver proofs

Isabelle — Intro

Why Theorem Proving?

- Analysing systems/programs thoroughly
- Finding design and specification errors early
- High assurance (machine checked)
- Can communicate proof for checking by others
- It's not always easy
- It's fun

A generic interactive proof assistant

► Generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will use HOL)

Interactive:

more than just yes/no, you can interactively guide the system

Proof assistant:

helps to explore, find, and maintain proofs

The Heads behind Isabelle

Larry Paulson Tobias Nipkow Markus Wenzel

Isabelle — Intro

Why Isabelle?

► Free

- Widely used systems
- Active development
- High expressiveness and automation
- Reasonably easy to use
- ▶ and because we know it best ;-)

If I prove it on the computer, it is correct, right?

If I Prove It on the Computer, It Is Correct, Right?

No, because:

- 1. Hardware could be faulty
- 2. Operating system could be faulty
- 3. Implementation runtime system could be faulty
- 4. Compiler could be faulty
- 5. Implementation of prover could be faulty
- 6. Logic could be inconsistent
- 7. Theorem could mean something else

If I Prove It on the Computer, It Is Correct, Right?

No, but:

Probability for

- 1 and 2 reduced by using different systems
- ► 3 and 4 reduced by using different compilers
- Faulty implementation reduced by right architecture
- Inconsistent logic reduced by implementing & analysing it
- Wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than with manual proof.

If I Prove It on the Computer, It Is Correct, Right?

Soundness architectures Careful implementation	PVS
LCF approach, small proof kernel	HOL4 Isabelle
Explicit proofs + proof checker	Coq Twelf Isabelle

Meta Logic

Meta language

The language used to talk about another language.

Examples

German in a Spanish class, English in an English class.

Meta logic

The logic used to formalize another logic.

Example

Mathematics used to formalize derivations in formal logic.

Meta Logic — Example

Syntax
Formulae:
$$F ::= V | F \longrightarrow F | F \land F |$$
 False
 $V ::= [A - Z]$

Derivability: $S \vdash X$ where X a formula, S a set of formulae

Logic vs. meta logic

$$\begin{array}{ll} X \in S \\ \hline S \vdash X \land Y \\ \hline S \vdash X \land Y \\ \hline \end{array} \begin{array}{ll} S \cup \{X\} \vdash Y \\ \hline S \vdash X \longrightarrow Y \\ \hline S \cup \{X,Y\} \vdash Z \\ \hline S \cup \{X \land Y\} \vdash Z \\ \hline \end{array}$$

Isabelle — Intro

Isabelle's Meta Logic

 $\bigwedge \implies \lambda \equiv$

Isabelle — Intro

Syntax $\bigwedge x. F$ (F another meta level formula) in ASCII !!x. F

- Universal quantifier at the meta level
- Used to denote parameters
- Example and more later

Isabelle — Intro

Syntax $A \Longrightarrow B$ (A, B other meta level formulae) in ASCII A ==> B

Binds to the right

$$A \Longrightarrow B \Longrightarrow C = A \Longrightarrow (B \Longrightarrow C)$$

Abbreviation

$$\llbracket A; B \rrbracket \Longrightarrow C \quad = \quad A \Longrightarrow B \Longrightarrow C$$

- \blacktriangleright Read: A and B implies C
- Used to write rules, theorems, and proof states

Isabelle — Intro

Example: a Theorem

Mathematics if x < 0 and y < 0, then x + y < 0

Formal logic variation

$$\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$$
$$\{x < 0; y < 0\} \vdash x + y < 0$$

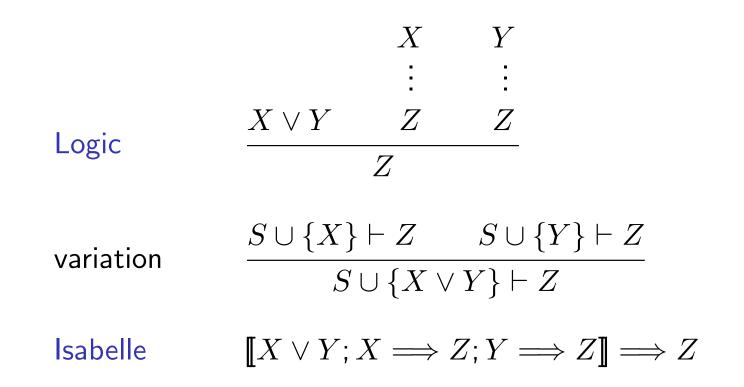
Isabelle variation variation lemma " $x < 0 \land y < 0 \longrightarrow x + y < 0$ " lemma " $[x < 0; y < 0] \implies x + y < 0$ " lemma assumes "x < 0" and "y < 0" shows "x + y < 0"

Example: a Rule

Logic	$\frac{X Y}{X \wedge Y}$
variation	$\frac{S \vdash X \qquad S \vdash Y}{S \vdash X \land Y}$
lsabelle	$\llbracket X; Y \rrbracket \Longrightarrow X \land Y$

Isabelle — Intro

Example: a Rule with Nested Implication



Isabelle — Intro

Syntax $\lambda x. F$ (F another meta level formula)in ASCII%x. F

- Lambda abstraction
- Used for functions in object logics
- Used to encode bound variables in object logics
- More about this in the next lecture

Proof General – user interface
HOL, ZF – object-logics
Isabelle – generic, interactive theorem prover
Standard ML – logic implemented as ADT

User can access all layers!

System Requirements

Linux, FreeBSD, MacOS X or Solaris

Standard ML

(PolyML fastest, SML/NJ supports more platforms)

XEmacs or Emacs (for ProofGeneral)

Documentation

Available from http://isabelle.in.tum.de

- Learning Isabelle
 - Tutorial on Isabelle/HOL (LNCS 2283)
 - Tutorial on Isar
 - Tutorials for various packages
- Reference Manuals
 - Isabelle/Isar Reference Manual
 - Isabelle Reference Manual
 - Isabelle System Manual
- Reference Manuals for Object-Logics

ProofGeneral

- User interface for Isabelle
- Runs under XEmacs or Emacs
- Isabelle process in background

Interaction via

- Basic editing in XEmacs (with highlighting etc)
- Buttons (tool bar)
- Key bindings
- ProofGeneral Menu (lots of options, try them)

X-Symbol Cheat Sheet

Input of funny symbols in ProofGeneral

- via menu ("X-Symbol")
- ▶ via ASCII encoding (similar to \ATEX): \<and>, \<or>, ...
- ▶ via abbreviation: /\, \/, -->, ...
- ▶ via *rotate*: 1 C-. = λ (cycles through variations of letter)

	\forall	Ξ	λ	_	\wedge	V	\longrightarrow	\Rightarrow
1.	\ <forall></forall>	\ <exists></exists>	\ <lambda></lambda>	\ <not></not>		\backslash	>	=>
2.	ALL	EX	%	~	&			

- 1. converted to X-Symbol
- 2. stays ASCII

For more symbols, see LNCS 2283, Appendix 1.

Isabelle — Intro

Demo

Isabelle — Intro