Automatic Deduction — LV 703522
Introduction to Isabelle

Clemens Ballarin

Universitat Innsbruck

Intro

Organisatorials

Web Page
http://cl-informatik.uibk.ac.at/teaching/ss08

Installation

» Installed on zid-gpl, type Isabelle &
» We will use Isabelle 2007.

General Schedule

» |Lectures
» Homework

» Exercise sessions where homework will be discussed

Isabelle — Intro Clemens Ballarin

http://cl-informatik.uibk.ac.at/teaching/ss08

What You Will Learn

» How to use a theorem prover
» Background, how it works

» How to prove and specify

Health Warning

Theorem Proving is addictive

Isabelle — Intro Clemens Ballarin

Contents

» Intro & motivation, getting started with Isabelle

» Foundations & Principles

» Lambda Calculus
» Types & Classes
» Natural Deduction
» Term rewriting

» Proof & Specification Techniques

» Isar: mathematics style proofs
» Inductively defined sets, rule induction
» Datatypes, structural induction
» Recursive functions & code generation

Isabelle — Intro Clemens Ballarin

Contents

» Intro & motivation, getting started with Isabelle

» Foundations & Principles

» Lambda Calculus
» Types & Classes
» Natural Deduction
» Term rewriting

» Proof & Specification Techniques

» Isar: mathematics style proofs
» Inductively defined sets, rule induction
» Datatypes, structural induction
» Recursive functions & code generation

Isabelle — Intro Clemens Ballarin

Schedule

6 Mar
13 Mar
10 April
24 April
15 May
5 June
19 June

3 July

Isabelle — Intro

Introduction

A-calculus

Higher-Order Logic

Rewriting

ISAR

Sets and inductive definitions
HOL as programming language
Exam

3 April
17 April
8 May
29 May
12 June
26 June

Exercises

Clemens Ballarin

Introduction

Isabelle — Intro Clemens Ballarin

What is a Proof?

To prove (Merriam-Webster)

1. from Latin probare (test, approve, prove)
2. to learn or find out by experience (archaic)

3. to establish the existence, truth, or validity of
(by evidence or logic)
Prove a theorem; the charges were never proved in court

Pops up everywhere

» politics (weapons of mass destruction)
» courts (beyond reasonable doubt)
> religion (god exists)

» science (cold fusion works)

Isabelle — Intro Clemens Ballarin

What is a Mathematical Proof?

In mathematics, a proof is a demonstration that, given certain

axioms, some statement of interest is necessarily true.
(Wikipedia)

Example: /2 is not rational.

Proof. Assume there is r € Q such that 7 = 2.

Hence there are mutually prime p and ¢ with r = g.

Thus 2¢% = p?, i.e. p? is divisible by 2.

2 Is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢°> = p® and dividing by 2 gives ¢° = 2s°.
Hence, ¢ is also divisible by 2. Contradiction. Qed.

Isabelle — Intro Clemens Ballarin

Nice, but...

» Still not rigourous enough for some

» What are the axioms?

» What are the rules?

» How big can the steps be?
» What is obvious or trivial?

» Informal language, easy to get wrong,

» easy to miss something, easy to cheat.

Theorem. A cat has nine tails.

Proof. No cat has eight tails.
One cat has one more tail than no cat.
Hence i1t must have nine tails.

Isabelle — Intro Clemens Ballarin

What is a Formal Proof?

A derivation in a formal calculus

Example

AN B — B A A derivable in the following system:

XGS(tion) SU{X}I—Y(_)
assumption im
SEx P SFX _—y P
SFX SFY . SU{X,Y}FZ |
T (conjl) (conjE)
AY SU{XAYYF Z
Proof
1. {AB}FB (by assumption)
2. {AB}FA (by assumption)
3. {A,B}-BAA (by conjl with 1 and 2)
4. {ANB}+FBAMAA (by conjE with 3)
5. {}FAANB — BAA (byimpl with 4)

Isabelle — Intro

Clemens Ballarin

What is a Theorem Prover?
Implementation of a formal logic on a computer

» Fully automated (propositional logic)

» Automated, but not necessarily terminating
(first-order logic)

» With automation, but mainly interactive
(higher-order logic)

» Based on rules and axioms

» Can deliver proofs

There are other (algorithmic) verification tools:
» Model checking, static analysis, ...

» Usually do not deliver proofs

Isabelle — Intro Clemens Ballarin

Why Theorem Proving?

Analysing systems/programs thoroughly
Finding design and specification errors early
High assurance (machine checked)

Can communicate proof for checking by others
It's not always easy

It's fun

vV v v. v v Y

Isabelle — Intro Clemens Ballarin

Isabelle

A generic interactive proof assistant

» Generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will use HOL)
» Interactive:

more than just yes/no, you can interactively guide the system
» Proof assistant:

helps to explore, find, and maintain proofs

Isabelle — Intro Clemens Ballarin

The Heads behind Isabelle

Larry Paulson Tobias Nipkow Markus Wenzel

Isabelle — Intro Clemens Ballarin

Why Isabelle?

Free

Widely used systems

Active development

High expressiveness and automation

Reasonably easy to use

vV v v. v v Y

and because we know it best ;-)

Isabelle — Intro Clemens Ballarin

If | prove it on the computer, it is correct, right?

Isabelle — Intro Clemens Ballarin

If | Prove It on the Computer, It Is Correct, Right?

No, because:

Hardware could be faulty

Operating system could be faulty
Implementation runtime system could be faulty
Compiler could be faulty

Implementation of prover could be faulty

Logic could be inconsistent

N o s -

Theorem could mean something else

Isabelle — Intro Clemens Ballarin

If | Prove It on the Computer, It Is Correct, Right?

No, but:
Probability for

» 1 and 2 reduced by using different systems

» 3 and 4 reduced by using different compilers

» Faulty implementation reduced by right architecture

» Inconsistent logic reduced by implementing & analysing it

» Wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than with manual
proof.

Isabelle — Intro Clemens Ballarin

If | Prove It on the Computer, It Is Correct, Right?

Soundness architectures

Careful implementation

LCF approach, small proof kernel

Explicit proofs + proof checker

Isabelle — Intro

PVS

HOL4
Isabelle

Coq
Twelf
Isabelle

Clemens Ballarin

Meta Logic

Meta language
The language used to talk about another language.

Examples

German in a Spanish class, English in an English class.

Meta logic
The logic used to formalize another logic.

Example
Mathematics used to formalize derivations in formal logic.

Isabelle — Intro Clemens Ballarin

Meta Logic — Example

Syntax
Formulae: F:=V | F—F | FANF | False
Vi=[A-Z7]

Derivability: S F X where X a formula, S a set of formulae

Logic vs. meta logic

X eSS SU{X}FY
SEX SEFX —Y
SFX SFY SU{X,Y}+Z
SFXAY SU{XAY}FZ

Isabelle — Intro Clemens Ballarin

Isabelle’s Meta Logic

Isabelle — Intro Clemens Ballarin

Syntax Ax. F (F' another meta level formula)
in ASCIl 'Ix. F

» Universal quantifier at the meta level
» Used to denote parameters

» Example and more later

Isabelle — Intro Clemens Ballarin

—

Syntax A= B (A, B other meta level formulae)
in ASCII A ==> B

Binds to the right
A—B—C = A— (B= ()
Abbreviation

[A;B] —C = A—B=—/C

» Read: A and B implies C

» Used to write rules, theorems, and proof states

Isabelle — Intro Clemens Ballarin

Example: a Theorem

Mathematics ifx <0andy<0,thenz+y <0

Formal logic F z2<0Ay<0—z4+y<O0

variation {r<0,y<0} Fax+y<O0

Isabelle lemma "z < 0Ny <0—x+y<0”
variation lemma "z <0,y < 0] = 2+y <0"
variation lemma

assumes 'z < 0" and "y < 0"
shows "z 4+ y < 0"

Isabelle — Intro Clemens Ballarin

Example: a Rule

Logic

variation

Isabelle

Isabelle — Intro

X Y
XNY

SHEX SEY
SEFXAY

[X;Y] = X AY

Clemens Ballarin

Example: a Rule with Nested Implication

X Y

XVY A Z

Logic
gl ”
o SU{X}+HZ SU{Y}+Z
variation
SU{XVY}FZ
Isabelle IXVY, X = 2,)Y = 7] = Z
Isabelle — Intro

Clemens Ballarin

Syntax Az. F (F' another meta level formula)
in ASCIl %x. F

Lambda abstraction
Used for functions in object logics

Used to encode bound variables in object logics

vV v v v

More about this in the next lecture

Isabelle — Intro Clemens Ballarin

System Architecture

Proof General — user interface
HOL, ZF - object-logics
Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

User can access all layers!

Isabelle — Intro Clemens Ballarin

System Requirements

» Linux, FreeBSD, MacOS X or Solaris

» Standard ML
(PolyML fastest, SML/NJ supports more platforms)

» XEmacs or Emacs
(for ProofGeneral)

Isabelle — Intro Clemens Ballarin

Documentation

Available from http://isabelle.in.tum.de

» Learning Isabelle

» Tutorial on Isabelle/HOL (LNCS 2283)
» Tutorial on Isar
» Tutorials for various packages

» Reference Manuals

» Isabelle/Isar Reference Manual
» Isabelle Reference Manual
» Isabelle System Manual

» Reference Manuals for Object-Logics

Isabelle — Intro

Clemens Ballarin

http://isabelle.in.tum.de

ProofGeneral

» User interface for Isabelle

» Runs under XEmacs or Emacs

» Isabelle process in background

Interaction via
» Basic editing in XEmacs (with highlighting etc)
» Buttons (tool bar)
» Key bindings
>

ProofGeneral Menu (lots of options, try them)

Isabelle — Intro Clemens Ballarin

X-Symbol Cheat Sheet

Input of funny symbols in ProofGeneral

» via menu (“X-Symbol”)

via ASCII encoding (similar to IATEX): \<and>, \<or>, ...

>
» via abbreviation: /\, \/, -->, ...
>

via rotate: 1 C-. = X (cycles through variations of letter)

v 3 A — A\ \V, — | =
1. | \<forall> | \<exists> | \<lambda> | \<not> | /\ | \/ | ——> | =>
2. | ALL EX yA ~ & |

—

2. stays ASCII

. converted to X-Symbol

For more symbols, see LNCS 2283, Appendix 1.

Isabelle — Intro

Clemens Ballarin

Demo

Isabelle — Intro Clemens Ballarin

	Introduction
	Demo
	Document Generation

