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Types in Isabelle

T o= B|v|"Ww/|(r...,T)K | 7:C

B base types

v type variables

K  type constructors
C  sorts

» Base types: bool, int, ...
» Type variables: ’a, ’al, ’name, ’7a, ...
» Type constructors: int list, ’a list, ’a = ’b, ...

» Sorts: ’a :: order, ’a :: {plus, order}, ...
Restrict a type to one or more classes.

Isabelle — HOL Clemens Ballarin



Terms in Isabelle

t o= v | 2w | c| (t) | Ax.t) | (t:7)

v,x variable names
c  constants

» Variables & constants: a, al, name, ...

» Type constraints: £ :: ’a = ’D
Restrict a term to a type.

» Schematic variables: variables that can be instantiated.
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Type Classes

Similar to Haskell's type classes, but with semantic properties

class order =
fixes less eq (infix " <" 50)
and Jess (infix " <" 50)
assumes order_refl: "x < "
and order_trans: "[x <y, y <z] =z < 2"
and ...

Theorems can be proved in the abstract

lemma (in order) order_less_trans:
"Nr. [r<yy<z] =z <2

Here z,y and z have type 'a :: order.
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Type Classes

Can be used for subtyping

class /inorder = order +
assumes linorder_linear: "x < yVy < x"

Can be instantiated
instance nat :: " {order, linorder}" by ...
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Schematic Variables

Two operational roles of variables.

» In lemmas they must be instantiated when applied.
[X;Y] = XAY

» During proofs they must not be instantiated.
lemma "z 4+ 0=0+2"

Convention: lemma must be true for all z.

Isabelle has free (x), bound (x), and schematic (7x) variables.
Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.
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Higher-Order Unification

Unification:
Find substitution o on variables for terms s,t such that

o(s) =o(t)

In Isabelle:
Find substitution o on schematic variables such that

o(s) =apy o(t)

Examples:
XA =48, zTAX ?7X — x,?7Y — 2]
P x =aBn TAZ ?P — A\z. x A 1]
P(fz) =apy Yo 7f — Axr. 2,7Y — P]

Higher-Order: schematic variables can be functions.
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Higher-Order Unification

» Unification modulo a3 is semi-decidable
» Unification modulo a1 is undecidable

» Higher-Order Unification has possibly infinitely many most
general solutions

But:
» Most cases are well-behaved

» Important fragments (like Higher-Order Patterns) are
decidable
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Higher-Order Patterns

Higher-Order Pattern:
» is a term in S-normal form where

» each occurrence of a schematic variable is of the from
ft1 ...ty

» and the t; ... t,, are mp-convertible into n distinct bound
variables
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Preview: Proofs in Isabelle
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Proofs in Isabelle

General schema

lemma name: " (goal)”

apply (method)
apply (method)

done

» Sequential application of methods until all subgoals are solved.
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The Proof State

r1...T,  Parameters
Ai... A, Local assumptions

B Current (sub)goal
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Isabelle Theories

Syntax

theory (name)
imports (importy) ... {(import,)
begin

(declarations, definitions, theorems, proofs, ...)*

end

» (name): name of theory. Must live in file (name).thy
.

(import;): name of imported theory. Import transitive.

Unless you need something special:
theory (name)

imports Main
begin
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Natural Deduction
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Natural Deduction Rules

A B _ ANB [A; B] = C _
conjl conjE

AANB C

A B disjl1 /2 AV B A—"C B—/C disiE
AVB AvB C >

A=—B . A— B A B=C .
disjE impE

A— B C

For each connective (A, V, etc):
introduction and elemination rules
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Proof by Assumption

apply assumption

proves
1. [By;...;Bn] = C
by unifying C' with one of the B;

There may be more than one matching B;
and multiple unifiers.

Backtracking!

Explicit backtracking command: back
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Intro Rules

Intro rules decompose formulae to the right of =—>.

apply (rule {(intro-rule))

Intro rule [Ai;...;A,] = A means
» To prove A it suffices to show Ay... A,

Applying rule [Az;...; A,] = A to subgoal C:

» unify A and C

» replace C' with n new subgoals A;... A,
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Elim Rules

Elim rules decompose formulae on the left of =—.

apply (erule <elim-rule>)

Elim rule [A1; Ay;...; Ay] = A means

» If | know A; and want to prove A it suffices to show A, ... A,

Applying rule [A1;...; An] = A to subgoal C:
Like rule but also

» unifies first premise of rule with an assumption

» eliminates that assumption
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Demo: Propositional
Reasoning
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Iff, Negation, True and False

A— B B=— A A=1HB

[A— B;B— A] = C

iffl

iffD1

A=— B

A = False
notl

-

Truel

True
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iffE

iffD2

False
FalseE
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Equality

s=1 r—=3S s=1
refl sym trans
t=1 t=s r==t
s=1t P s
subst
Pt

Rarely needed explicitly — used implicitly by term rewriting.
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Classical

True_or_False
P = True Vv P = False

excluded_middle
PV —-P

- A — False “A— A _
ccontr classical
A A

» excluded_middle, ccontr and classical not derivable from the
other rules.

» If we include True_or_False, they are derivable.

They make the logic classical, non-constructive.
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Cases

excluded_middle
PV —-P

Is a case distinction on type bool.

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac (term))
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Safe and Not so Safe

Safe rules preserve provability:

conjl, impl, notl, iffl, refl, ccontr, classical, conjE,
disjE

A B

ANB

Unsafe rules can turn a provable goal into an unprovable one:

disjl1, disjl2, impE, iffD1, iffD2, notE

conjl

disjl1
AV B

Apply safe rules before unsafe ones.
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Demo: More Rules
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Quantifiers
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Scope

» Scope of parameters: whole subgoal

» Scope of V,d,...: ends with meta-level connective:
—, = Or ;.
Example:
ANzy [Vy.Py—Qzy, Quy] = 3v.Quzy
means

ANxy. [(Vy1. Pyr — Qz2zy1); Quy] = (Fr1. Q x1 v)
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Natural Deduction for Quantifiers

/\CU.PCU Ve. P x Pt — R
alll allE
Ve. P x R
P ?r dr. P x /\:U.Pa::>R
ex| exE
dr. P x R

» alll and exE introduce new parameters (A x).

» allE and exl introduce new unknowns (?x).
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Instantiating Rules

apply (rule_tac x = " (term)” in (rule))

Like rule, but 7z in (rule) is instantiated by (term) before
application.

Similar: erule_tac

» xis in (rule), not in goal.

» (term) may contain parameters from the goal and those
introduced in Isar texts (later).
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Two Successful Proofs

1. V. dy. x =y
apply (rule alll)
1. ANz. Jy. x =y

Best practice Exploration
apply (rule_tac x = "x" in exl) apply (rule exl)
1. Ne.z == 1. Ne.x =7y x
apply (rule refl) apply (rule refl)
Y — Au.u
simpler & clearer shorter & trickier
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Two Unsuccessful Proofs

1. dJy. Ve. z =y

apply (rule_tac x = 777 in exl) apply (rule exl)
1. V. z =7y

apply (rule alll)
1. Ne.x ="y

apply (rule refl)
7y — x yields Ax'.x' =

Principle

?fx1...x, can only be replaced by term ¢
if params(t) C x1,...,x,.
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Safe and Unsafe Rules

Safe alll, exE

Unsafe allE, exl

Create parameters first, unknowns later
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Demo: Quantifier Proofs
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Parameter Names

Parameter names are chosen by Isabelle

1. Va.y. =y

apply (rule alll)
1. Az. Jy. x =y

apply (rule_tac x = "x" in exl)

Brittle!
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Renaming Parameters

1. V. dJy. x =y

apply (rule alll)
1. ANz. Jy. x =y

apply (rename_tac N)
1. AN.Jdy. N =y

apply (rule_tac x ="N" in exl)

In general
(rename_tac xj ...z, ) renames the rightmost (inner) n parameters

toxr1...2,.
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Forward Proof: frule and drule

apply (frule (rule))

Rule: [A1;...; A = A
Subgoal: 1. [By;.-;By]=1C

Substitution:  o(B;) = (A1)

New subgoals: 1. o([Bi;...; Bn] = A4>)

Like frule but also deletes B;: apply (drule (rule))
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Examples for Forward Rules

Isabelle — HOL

P A P A
« conjunctl « conjunct?
Q
P—Q P
mp
Q
Vx. P x
spec
P ?x
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Forward Proof: OF

r [OF r1...7y]

Prove assumption 1 of theorem r with theorem r1, and assumption

2 with theorem 75, etc ...

Rule r [A1;...; An] = A
Rule rq [Bi;...;B,] = B

Substitution o (B) = o(A;)

r [OF 7] o([Bi;...; Bn; Aa; ...

May use underscore to omit an argument:

An] = A)

r [OF _ ry] proves assumption 2 with theorem 75.
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Forward proofs: THEN

r1 [THEN r2]  means 75 [OF rq]
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Demo: Forward Proofs
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Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)
e x. P x is a value that satisfies P (if such a value exists)

e also known as description operator.
In Isabelle the e-operator is written SOME z. P x

P ?x
P (SOME z. P x)

somel
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More Epsilon

e implies Axiom of Choice:

Ve, dy. Q vy = 3f. Va. Q = (f x)

Existential and universal quantification can be defined with €.

Isabelle also knows the definite description operator ¢:

the_eq_trivial
(THEz. 2 =0a)=a
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More Proof Methods

apply (intro (intro-rules))
apply (elim (elim-rules))

apply clarify
apply safe

apply fast
apply best

apply blast

apply metis
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repeatedly applies intro rules
repeatedly applies elim rules

applies all safe rules
that do not split the goal

applies all safe rules

sequent based automatic
search tactics

an automatic tableaux prover
(works well on predicate logic)

resolution prover for
first-order logic with equality
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Epsilon and Automation Demo
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Attributes

Review:
Safe and unsafe rule; heuristics: use safe before unsafe

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired.
Use attributes to declare safe and unsafe intro and elim rules.

Syntax:
[(kind)!] for safe rules ((kind) one of intro, elim, dest)
[(kind)] for unsafe rules

Isabelle — HOL Clemens Ballarin



More on Automation

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

Example:
declare attribute globally
remove attribute gloabllay
use locally
delete locally
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declare conjl [intro!] allE [elim]
declare allE [rule del]

apply (blast intro: somel)

apply (blast del: conjl)
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Demo: Attributes
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We Have Learned so far...

Proof rules propositional logic
Proof rules for predicate calculus
Safe and unsafe rules

Forward proof

The Epsilon Operator

vV v v v v Y

Some automation (classical reasoner)
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