Automatic Deduction — LVA 703522 Introduction to Isabelle

Clemens Ballarin
Universität Innsbruck

HOL

Contents

- Intro \& motivation, getting started with Isabelle
- Foundations \& Principles
- Lambda Calculus
- Types \& Classes
- Natural Deduction
- Term rewriting
- Proof \& Specification Techniques
- Isar: mathematics style proofs
- Inductively defined sets, rule induction
- Datatypes, structural induction
- Recursive functions \& code generation

Types

Types in Isabelle

$$
\begin{aligned}
\tau \quad & ::= \\
& B\left|{ }^{\prime} \nu\right|{ }^{\prime} ? \nu|(\tau, \ldots, \tau) K| \tau:: C \\
& B \text { base types } \\
& \nu \\
& \text { type variables } \\
& K \\
& \text { type constructors } \\
& C \text { sorts }
\end{aligned}
$$

- Base types: bool, int,...
- Type variables: 'a, 'a1, 'name, '?a,...
- Type constructors: int list, 'a list, 'a \Rightarrow 'b, ...
- Sorts: 'a :: order, 'a :: \{plus, order\},... Restrict a type to one or more classes.

Terms in Isabelle

$$
\begin{aligned}
& t::= \\
& v|? v| c|(t t)|(\lambda x . t) \mid(t:: \tau) \\
& v, x \text { variable names } \\
& c \text { constants }
\end{aligned}
$$

- Variables \& constants: a, a1, name, ...
- Type constraints: $\mathrm{f}::$ 'a \Rightarrow 'b

Restrict a term to a type.

- Schematic variables: variables that can be instantiated.

Type Classes

Similar to Haskell's type classes, but with semantic properties
class order $=$
fixes less_eq (infix " $\leq " 50$) and less (infix "<"50)
assumes order_refl: " $x \leq x$ " and order_trans: " $\llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z "$ and . . .

Theorems can be proved in the abstract
lemma (in order) order_less_trans:
" $\bigwedge x . \llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$
Here x, y and z have type ' $a::$ order.

Type Classes

Can be used for subtyping
class linorder $=$ order +
assumes linorder_linear: " $x \leq y \vee y \leq x "$
Can be instantiated
instance nat :: " \{order, linorder\}" by ...

Schematic Variables

Two operational roles of variables.

- In lemmas they must be instantiated when applied.

$$
\llbracket X ; Y \rrbracket \Longrightarrow X \wedge Y
$$

- During proofs they must not be instantiated.

$$
\text { lemma " } x+0=0+x "
$$

Convention: lemma must be true for all x.

Isabelle has free (x), bound (x), and schematic $(? x)$ variables.
Only schematic variables can be instantiated.
Free converted into schematic after proof is finished.

Higher-Order Unification

Unification:

Find substitution σ on variables for terms s, t such that
$\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that
$\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$

Examples:

$? X \wedge ? Y$	$=\alpha_{\alpha \beta}$	$x \wedge x$	$[? X \mapsto x, ? Y \mapsto x]$
$? P x$	$=\alpha_{\beta \eta}$	$x \wedge x$	$[? P \mapsto \lambda x \cdot x \wedge x]$
$P(? f x)$	$=\alpha_{\alpha \beta}$	$? Y x$	$[? f \mapsto \lambda x \cdot x, ? Y \mapsto P]$

Higher-Order: schematic variables can be functions.

Higher-Order Unification

- Unification modulo $\alpha \beta$ is semi-decidable
- Unification modulo $\alpha \beta \eta$ is undecidable
- Higher-Order Unification has possibly infinitely many most general solutions

But:

- Most cases are well-behaved
- Important fragments (like Higher-Order Patterns) are decidable

Higher-Order Patterns

Higher-Order Pattern:

- is a term in β-normal form where
- each occurrence of a schematic variable is of the from ?f $t_{1} \ldots t_{n}$
- and the $t_{1} \ldots t_{n}$ are η-convertible into n distinct bound variables

Preview: Proofs in Isabelle

Proofs in Isabelle

General schema
 lemma name：＂〈goal＂＂
 apply \langle method〉
 apply \langle method〉

done

－Sequential application of methods until all subgoals are solved．

The Proof State

1. $\backslash x_{1} \ldots x_{p} \cdot \llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B$
2. $\backslash y_{1} \ldots y_{q} \cdot \llbracket C_{1} ; \ldots ; C_{m} \rrbracket \Longrightarrow D$
$x_{1} \ldots x_{p} \quad$ Parameters
$A_{1} \ldots A_{n}$ Local assumptions
$B \quad$ Current (sub)goal

Isabelle Theories

Syntax
theory \langle name〉
imports $\left\langle\right.$ import $\left._{1}\right\rangle \ldots\left\langle\right.$ import $\left._{n}\right\rangle$
begin
（declarations，definitions，theorems，proofs，．．．）＊
end
－$\langle n a m e\rangle$ ：name of theory．Must live in file $\langle n a m e\rangle$ ．thy
－$\left\langle\right.$ import $\left._{i}\right\rangle$ ：name of imported theory．Import transitive．
Unless you need something special：
theory 〈name〉
imports Main
begin

Natural Deduction

Natural Deduction Rules

$$
\begin{aligned}
& \frac{A \quad B}{A \wedge B} \text { conjl } \quad \frac{A \wedge B \quad \llbracket A ; B \rrbracket \Longrightarrow C}{C} \text { conjE } \\
& \frac{A}{A \vee B} \frac{B}{A \vee B} \quad \text { disjl1/2 } \frac{A \vee B \quad A \Longrightarrow C}{C} \quad B \Longrightarrow C \quad \operatorname{disjE} \\
& \begin{array}{llll}
\frac{A \Longrightarrow B}{A \longrightarrow B}
\end{array} \quad \operatorname{disjE} \quad \begin{array}{lll}
A \longrightarrow B & A & B \Longrightarrow C \\
& & \\
i m p E
\end{array}
\end{aligned}
$$

For each connective $(\wedge, \vee$, etc): introduction and elemination rules

Proof by Assumption

apply assumption

proves

1. $\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Longrightarrow C$
by unifying C with one of the B_{i}

There may be more than one matching B_{i} and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro Rules

Intro rules decompose formulae to the right of \Longrightarrow.

$$
\text { apply (rule }\langle\text { intro-rule }\rangle \text {) }
$$

Intro rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means

- To prove A it suffices to show $A_{1} \ldots A_{n}$

Applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal C :

- unify A and C
- replace C with n new subgoals $A_{1} \ldots A_{n}$

Elim Rules

Elim rules decompose formulae on the left of \Longrightarrow.
apply (erule <elim-rule>)

Elim rule $\llbracket A_{1} ; A_{2} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means

- If I know A_{1} and want to prove A it suffices to show $A_{2} \ldots A_{n}$

Applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal C :
Like rule but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Demo: Propositional Reasoning

Iff, Negation, True and False

$$
\begin{aligned}
& \frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffl } \quad \frac{A=B \quad \llbracket A \longrightarrow B ; B \longrightarrow A \rrbracket \Longrightarrow C}{C} \text { iffE } \\
& \frac{A=B}{A \Longrightarrow B} \text { iffD1 } \\
& \frac{A \Longrightarrow \text { False }}{\neg A} \text { notl } \\
& \overline{\text { True }} \text { Truel }
\end{aligned}
$$

Equality

$$
\begin{aligned}
& \frac{s=t}{t=t} \text { refl } \quad \frac{s=s}{t=s} \quad \frac{r=s \quad s=t}{r=t} \text { trans } \\
& \frac{s=t \quad P s}{P t} \text { subst }
\end{aligned}
$$

Rarely needed explicitly — used implicitly by term rewriting.

$$
\begin{gathered}
\overline{P=\text { True } \vee P=\text { False }} \text { True_or_False } \\
\frac{\overline{P \vee \neg P}}{} \text { excluded_middle } \\
\frac{\neg A \Longrightarrow \text { False }}{A} \text { ccontr } \quad \frac{\neg A \Longrightarrow A}{A} \text { classical }
\end{gathered}
$$

- excluded_middle, ccontr and classical not derivable from the other rules.
- If we include True_or_False, they are derivable.

They make the logic classical, non-constructive.

Cases

$$
\begin{gathered}
\quad \overline{P \vee \neg P} \text { excluded_middle } \\
\text { is a case distinction on type bool. }
\end{gathered}
$$

Isabelle can do case distinctions on arbitrary terms: apply (case_tac \langle term \rangle)

Safe and Not so Safe

Safe rules preserve provability:
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

$$
\frac{A \quad B}{A \wedge B} \text { conjl }
$$

Unsafe rules can turn a provable goal into an unprovable one: disj11, disjl2, impE, iffD1, iffD2, notE

$$
\frac{A}{A \vee B} \operatorname{disjl1}
$$

Apply safe rules before unsafe ones.

Demo: More Rules

Quantifiers

Scope

- Scope of parameters: whole subgoal
- Scope of \forall, \exists, \ldots : ends with meta-level connective: \Longrightarrow, \equiv or ;

Example:

$$
\begin{gathered}
\wedge x y \cdot \llbracket \forall y \cdot P y \longrightarrow Q z y ; \quad Q x y \rrbracket \Longrightarrow \exists x \cdot Q x y \\
\text { means } \\
\wedge x y \cdot \llbracket\left(\forall y_{1} \cdot P y_{1} \longrightarrow Q z y_{1}\right) ; Q x y \rrbracket \Longrightarrow\left(\exists x_{1} \cdot Q x_{1} y\right)
\end{gathered}
$$

Natural Deduction for Quantifiers

$$
\begin{array}{lll}
\frac{\bigwedge x . P x}{\forall x \cdot P x} \text { alll } & \frac{\forall x . P x}{} P ? x \Longrightarrow R \\
R & \text { alle } \\
\frac{P ? x}{\exists x \cdot P x} \text { exl } & \frac{\exists x . P x}{} \bigwedge x . P x \Longrightarrow R \\
R & \text { exE }
\end{array}
$$

- alll and exE introduce new parameters ($\bigwedge x$).
- allE and exl introduce new unknowns (? x).

Instantiating Rules

$$
\text { apply (rule_tac } x="\langle\text { term }\rangle \text { " in }\langle\text { rule }\rangle \text {) }
$$

Like rule, but ? x in $\langle r u l e\rangle$ is instantiated by \langle term \rangle before application.

Similar: erule_tac

- x is in $\langle r u l e\rangle$, not in goal.
- $\langle t e r m\rangle$ may contain parameters from the goal and those introduced in Isar texts (later).

Two Successful Proofs

1. $\forall x . \exists y \cdot x=y$
apply (rule alli)
2. $\bigwedge x . \exists y \cdot x=y$

Best practice
apply (rule_tac $x=$ " x " in exl) apply (rule exl)

1. $\bigwedge x . x=x$
apply (rule refl)
simpler \& clearer

Exploration

1. $\bigwedge x . x=? y x$
apply (rule refl)
? $y \mapsto \lambda u . u$
shorter \& trickier

Two Unsuccessful Proofs

\author{

1. $\exists y \cdot \forall x \cdot x=y$
 apply (rule_tac $x=? ? ?$ in exl) apply (rule exl)
 1. $\forall x \cdot x=? y$
 apply (rule alli)
 1. $\wedge x . x=$? y
 apply (rule refl)
 $? y \mapsto x$ yields $\bigwedge x^{\prime} \cdot x^{\prime}=x$
}

Principle

?f $x_{1} \ldots x_{n}$ can only be replaced by term t
if params $(t) \subseteq x_{1}, \ldots, x_{n}$.

Safe and Unsafe Rules

Safe alll, exE
Unsafe allE, exl

Create parameters first, unknowns later

Demo: Quantifier Proofs

Parameter Names

Parameter names are chosen by Isabelle

```
1. \(\forall x . \exists y . x=y\) apply (rule alli)
1. \(\bigwedge x . \exists y . x=y\)
apply (rule_tac \(x=" x\) " in exl)
```

Brittle!

Renaming Parameters

> 1. $\forall x . \exists y . x=y$
> apply (rule alll)
> 1. $\bigwedge x . \exists y \cdot x=y$
> apply $($ rename_tac N$)$
> 1. $\bigwedge N . \exists y \cdot N=y$
> apply (rule_tac $\mathrm{x}=" \mathrm{~N} "$ in exl $)$

In general
(rename_tac $x_{1} \ldots x_{n}$) renames the rightmost (inner) n parameters to $x_{1} \ldots x_{n}$.

Forward Proof: frule and drule

apply (frule $\langle r u l e\rangle$)

Rule:
Subgoal:
Substitution:
$\sigma\left(B_{i}\right) \equiv \sigma\left(A_{1}\right)$
Unifiable assumption B_{i} is chosen.
New subgoals: 1. $\sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{2}\right)$

$$
\begin{aligned}
& \text { m-1. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{m}\right) \\
& \text { m. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A \rrbracket \Longrightarrow C\right)
\end{aligned}
$$

Like frule but also deletes B_{i} : apply (drule $\langle r u l e\rangle$)

Examples for Forward Rules

$$
\begin{gathered}
\frac{P \wedge Q}{P} \text { conjunct1 } \quad \frac{P \wedge Q}{Q} \text { conjunct2 } \\
\frac{P \longrightarrow Q \quad P}{Q} \mathrm{mp} \\
\frac{\forall x . P x}{P ? x} \mathrm{spec}
\end{gathered}
$$

Forward Proof: OF

$$
r\left[\mathrm{OF} r_{1} \ldots r_{n}\right]
$$

Prove assumption 1 of theorem r with theorem r_{1}, and assumption 2 with theorem r_{2}, etc...

$$
\begin{array}{ll}
\text { Rule } r & \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A \\
\text { Rule } r_{1} & \llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow B \\
\text { Substitution } & \sigma(B) \equiv \sigma\left(A_{1}\right) \\
r\left[\text { OF } r_{1}\right] & \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A_{2} ; \ldots ; A_{m} \rrbracket \Longrightarrow A\right)
\end{array}
$$

May use underscore to omit an argument:
r [$\mathrm{OF} \mathrm{K}_{2}$] proves assumption 2 with theorem r_{2}.

Forward proofs: THEN
r_{1} [THEN r_{2}] means r_{2} [OF r_{1}]

Demo: Forward Proofs

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)
$\varepsilon x . P x$ is a value that satisfies P (if such a value exists)
ε also known as description operator. In Isabelle the ε-operator is written SOME $x . P x$

$$
\frac{P ? x}{P(\text { SOME } x \cdot P x)} \text { somel }
$$

More Epsilon

$$
\begin{aligned}
& \varepsilon \text { implies Axiom of Choice: } \\
& \forall x . \exists y . Q x y \Longrightarrow \exists f . \forall x . Q x(f x)
\end{aligned}
$$

Existential and universal quantification can be defined with ε.

Isabelle also knows the definite description operator ι :

$$
\overline{(\mathrm{THE} x . x=a)=a} \text { the_eq_trivial }
$$

More Proof Methods

apply（intro 〈intro－rules〉）	repeatedly applies intro rules
apply（elim 〈elim－rules〉）	repeatedly applies elim rules
apply clarify	applies all safe rules that do not split the goal
apply safe	applies all safe rules
apply fast	sequent based automatic apply best
search tactics	
apply blast	an automatic tableaux prover （works well on predicate logic）
apply metis	resolution prover for first－order logic with equality

Epsilon and Automation Demo

Attributes

Review：

Safe and unsafe rule；heuristics：use safe before unsafe

This can be automated

Automated methods（fast，blast，clarify etc）are not hardwired． Use attributes to declare safe and unsafe intro and elim rules．

Syntax：

［〈kind \rangle ！］for safe rules（〈kind \rangle one of intro，elim，dest）
［〈kind \rangle ］for unsafe rules

More on Automation

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

Example:

declare attribute globally remove attribute gloabllay use locally delete locally
declare conjl [intro!] allE [elim] declare allE [rule del] apply (blast intro: somel)
apply (blast del: conjl)

Demo: Attributes

We Have Learned so far...

- Proof rules propositional logic
- Proof rules for predicate calculus
- Safe and unsafe rules
- Forward proof
- The Epsilon Operator
- Some automation (classical reasoner)

