Automatic Deduction — LVA 703522
Introduction to Isabelle

Clemens Ballarin

Universitat Innsbruck

Contents

» Intro & motivation, getting started with Isabelle

» Foundations & Principles

» Lambda Calculus
» Types & Classes
» Natural Deduction
» Term rewriting

» Proof & Specification Techniques

» Isar: mathematics style proofs
» Inductively defined sets, rule induction
» Datatypes, structural induction
» Recursive functions & code generation

Isabelle — HOL Clemens Ballarin

Types

Isabelle — HOL Clemens Ballarin

Types in Isabelle

T o= B|v|"Ww/|(r...,T)K | 7:C

B base types

v type variables

K type constructors
C sorts

» Base types: bool, int, ...
» Type variables: ’a, ’al, ’name, ’7a, ...
» Type constructors: int list, ’a list, ’a = ’b, ...

» Sorts: ’a :: order, ’a :: {plus, order}, ...
Restrict a type to one or more classes.

Isabelle — HOL Clemens Ballarin

Terms in Isabelle

t o= v | 2w | c| (t) | Ax.t) | (t:7)

v,x variable names
c constants

» Variables & constants: a, al, name, ...

» Type constraints: £ :: ’a = ’D
Restrict a term to a type.

» Schematic variables: variables that can be instantiated.

Isabelle — HOL Clemens Ballarin

Type Classes

Similar to Haskell's type classes, but with semantic properties

class order =
fixes less eq (infix " <" 50)
and Jess (infix " <" 50)
assumes order_refl: "x < "
and order_trans: "[x <y, y <z] =z < 2"
and ...

Theorems can be proved in the abstract

lemma (in order) order_less_trans:
"Nr. [r<yy<z] =z <2

Here z,y and z have type 'a :: order.

Isabelle — HOL Clemens Ballarin

Type Classes

Can be used for subtyping

class /inorder = order +
assumes linorder_linear: "x < yVy < x"

Can be instantiated
instance nat :: " {order, linorder}" by ...

Isabelle — HOL Clemens Ballarin

Schematic Variables

Two operational roles of variables.

» In lemmas they must be instantiated when applied.
[X;Y] = XAY

» During proofs they must not be instantiated.
lemma "z 4+ 0=0+2"

Convention: lemma must be true for all z.

Isabelle has free (x), bound (x), and schematic (7x) variables.
Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Isabelle — HOL Clemens Ballarin

Higher-Order Unification

Unification:
Find substitution o on variables for terms s,t such that

o(s) =o(t)

In Isabelle:
Find substitution o on schematic variables such that

o(s) =apy o(t)

Examples:
XA =48, zTAX ?7X — x,?7Y — 2]
P x =aBn TAZ ?P — A\z. x A 1]
P(fz) =apy Yo 7f — Axr. 2,7Y — P]

Higher-Order: schematic variables can be functions.

Isabelle — HOL Clemens Ballarin

Higher-Order Unification

» Unification modulo a3 is semi-decidable
» Unification modulo a1 is undecidable

» Higher-Order Unification has possibly infinitely many most
general solutions

But:
» Most cases are well-behaved

» Important fragments (like Higher-Order Patterns) are
decidable

Isabelle — HOL Clemens Ballarin

Higher-Order Patterns

Higher-Order Pattern:
» is a term in S-normal form where

» each occurrence of a schematic variable is of the from
ft1 ...ty

» and the t; ... t,, are mp-convertible into n distinct bound
variables

Isabelle — HOL Clemens Ballarin

Preview: Proofs in Isabelle

Isabelle — HOL Clemens Ballarin

Proofs in Isabelle

General schema

lemma name: " (goal)”

apply (method)
apply (method)

done

» Sequential application of methods until all subgoals are solved.

Isabelle — HOL Clemens Ballarin

The Proof State

r1...T, Parameters
Ai... A, Local assumptions

B Current (sub)goal

Isabelle — HOL Clemens Ballarin

Isabelle Theories

Syntax

theory (name)
imports (importy) ... {(import,)
begin

(declarations, definitions, theorems, proofs, ...)*

end

» (name): name of theory. Must live in file (name).thy
.

(import;): name of imported theory. Import transitive.

Unless you need something special:
theory (name)

imports Main
begin

Isabelle — HOL Clemens Ballarin

Natural Deduction

Isabelle — HOL Clemens Ballarin

Natural Deduction Rules

A B _ ANB [A; B] = C _
conjl conjE

AANB C

A B disjl1 /2 AV B A—"C B—/C disiE
AVB AvB C >

A=—B . A— B A B=C .
disjE impE

A— B C

For each connective (A, V, etc):
introduction and elemination rules

Isabelle — HOL Clemens Ballarin

Proof by Assumption

apply assumption

proves
1. [By;...;Bn] = C
by unifying C' with one of the B;

There may be more than one matching B;
and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Isabelle — HOL Clemens Ballarin

Intro Rules

Intro rules decompose formulae to the right of =—>.

apply (rule {(intro-rule))

Intro rule [Ai;...;A,] = A means
» To prove A it suffices to show Ay... A,

Applying rule [Az;...; A,] = A to subgoal C:

» unify A and C

» replace C' with n new subgoals A;... A,

Isabelle — HOL

Clemens Ballarin

Elim Rules

Elim rules decompose formulae on the left of =—.

apply (erule <elim-rule>)

Elim rule [A1; Ay;...; Ay] = A means

» If | know A; and want to prove A it suffices to show A, ... A,

Applying rule [A1;...; An] = A to subgoal C:
Like rule but also

» unifies first premise of rule with an assumption

» eliminates that assumption

Isabelle — HOL Clemens Ballarin

Demo: Propositional
Reasoning

Isabelle — HOL Clemens Ballarin

Iff, Negation, True and False

A— B B=— A A=1HB

[A— B;B— A] = C

iffl

iffD1

A=— B

A = False
notl

-

Truel

True

Isabelle — HOL

iffE

iffD2

False
FalseE

Clemens Ballarin

Equality

s=1 r—=3S s=1
refl sym trans
t=1 t=s r==t
s=1t P s
subst
Pt

Rarely needed explicitly — used implicitly by term rewriting.

Isabelle — HOL Clemens Ballarin

Classical

True_or_False
P = True Vv P = False

excluded_middle
PV —-P

- A — False “A— A _
ccontr classical
A A

» excluded_middle, ccontr and classical not derivable from the
other rules.

» If we include True_or_False, they are derivable.

They make the logic classical, non-constructive.

Isabelle — HOL Clemens Ballarin

Cases

excluded_middle
PV —-P

Is a case distinction on type bool.

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac (term))

Isabelle — HOL Clemens Ballarin

Safe and Not so Safe

Safe rules preserve provability:

conjl, impl, notl, iffl, refl, ccontr, classical, conjE,
disjE

A B

ANB

Unsafe rules can turn a provable goal into an unprovable one:

disjl1, disjl2, impE, iffD1, iffD2, notE

conjl

disjl1
AV B

Apply safe rules before unsafe ones.

Isabelle — HOL Clemens Ballarin

Demo: More Rules

Isabelle — HOL Clemens Ballarin

Quantifiers

Isabelle — HOL Clemens Ballarin

Scope

» Scope of parameters: whole subgoal

» Scope of V,d,...: ends with meta-level connective:
—, = Or ;.
Example:
ANzy [Vy.Py—Qzy, Quy] = 3v.Quzy
means

ANxy. [(Vy1. Pyr — Qz2zy1); Quy] = (Fr1. Q x1 v)

Isabelle — HOL Clemens Ballarin

Natural Deduction for Quantifiers

/\CU.PCU Ve. P x Pt — R
alll allE
Ve. P x R
P ?r dr. P x /\:U.Pa::>R
ex| exE
dr. P x R

» alll and exE introduce new parameters (A x).

» allE and exl introduce new unknowns (?x).

Isabelle — HOL Clemens Ballarin

Instantiating Rules

apply (rule_tac x = " (term)” in (rule))

Like rule, but 7z in (rule) is instantiated by (term) before
application.

Similar: erule_tac

» xis in (rule), not in goal.

» (term) may contain parameters from the goal and those
introduced in Isar texts (later).

Isabelle — HOL Clemens Ballarin

Two Successful Proofs

1. V. dy. x =y
apply (rule alll)
1. ANz. Jy. x =y

Best practice Exploration
apply (rule_tac x = "x" in exl) apply (rule exl)
1. Ne.z == 1. Ne.x =7y x
apply (rule refl) apply (rule refl)
Y — Au.u
simpler & clearer shorter & trickier

Isabelle — HOL Clemens Ballarin

Two Unsuccessful Proofs

1. dJy. Ve. z =y

apply (rule_tac x = 777 in exl) apply (rule exl)
1. V. z =7y

apply (rule alll)
1. Ne.x ="y

apply (rule refl)
7y — x yields Ax'.x' =

Principle

?fx1...x, can only be replaced by term ¢
if params(t) C x1,...,x,.

Isabelle — HOL Clemens Ballarin

Safe and Unsafe Rules

Safe alll, exE

Unsafe allE, exl

Create parameters first, unknowns later

Isabelle — HOL Clemens Ballarin

Demo: Quantifier Proofs

Isabelle — HOL Clemens Ballarin

Parameter Names

Parameter names are chosen by Isabelle

1. Va.y. =y

apply (rule alll)
1. Az. Jy. x =y

apply (rule_tac x = "x" in exl)

Brittle!

Isabelle — HOL Clemens Ballarin

Renaming Parameters

1. V. dJy. x =y

apply (rule alll)
1. ANz. Jy. x =y

apply (rename_tac N)
1. AN.Jdy. N =y

apply (rule_tac x ="N" in exl)

In general
(rename_tac xj ...z,) renames the rightmost (inner) n parameters

toxr1...2,.

Isabelle — HOL Clemens Ballarin

Forward Proof: frule and drule

apply (frule (rule))

Rule: [A1;...; A = A
Subgoal: 1. [By;.-;By]=1C

Substitution: o(B;) = (A1)

New subgoals: 1. o([Bi;...; Bn] = A4>)

Like frule but also deletes B;: apply (drule (rule))

Isabelle — HOL Clemens Ballarin

Examples for Forward Rules

Isabelle — HOL

P A P A
« conjunctl « conjunct?
Q
P—Q P
mp
Q
Vx. P x
spec
P ?x

Clemens Ballarin

Forward Proof: OF

r [OF r1...7y]

Prove assumption 1 of theorem r with theorem r1, and assumption

2 with theorem 75, etc ...

Rule r [A1;...; An] = A
Rule rq [Bi;...;B,] = B

Substitution o (B) = o(A;)

r [OF 7] o([Bi;...; Bn; Aa; ...

May use underscore to omit an argument:

An] = A)

r [OF _ ry] proves assumption 2 with theorem 75.

Isabelle — HOL

Clemens Ballarin

Forward proofs: THEN

r1 [THEN r2] means 75 [OF rq]

Isabelle — HOL Clemens Ballarin

Demo: Forward Proofs

Isabelle — HOL Clemens Ballarin

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)
e x. P x is a value that satisfies P (if such a value exists)

e also known as description operator.
In Isabelle the e-operator is written SOME z. P x

P ?x
P (SOME z. P x)

somel

Isabelle — HOL Clemens Ballarin

More Epsilon

e implies Axiom of Choice:

Ve, dy. Q vy = 3f. Va. Q = (f x)

Existential and universal quantification can be defined with €.

Isabelle also knows the definite description operator ¢:

the_eq_trivial
(THEz. 2 =0a)=a

Isabelle — HOL Clemens Ballarin

More Proof Methods

apply (intro (intro-rules))
apply (elim (elim-rules))

apply clarify
apply safe

apply fast
apply best

apply blast

apply metis

Isabelle — HOL

repeatedly applies intro rules
repeatedly applies elim rules

applies all safe rules
that do not split the goal

applies all safe rules

sequent based automatic
search tactics

an automatic tableaux prover
(works well on predicate logic)

resolution prover for
first-order logic with equality

Clemens Ballarin

Epsilon and Automation Demo

Isabelle — HOL Clemens Ballarin

Attributes

Review:
Safe and unsafe rule; heuristics: use safe before unsafe

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired.
Use attributes to declare safe and unsafe intro and elim rules.

Syntax:
[(kind)!] for safe rules ((kind) one of intro, elim, dest)
[(kind)] for unsafe rules

Isabelle — HOL Clemens Ballarin

More on Automation

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

Example:
declare attribute globally
remove attribute gloabllay
use locally
delete locally

Isabelle — HOL

declare conjl [intro!] allE [elim]
declare allE [rule del]

apply (blast intro: somel)

apply (blast del: conjl)

Clemens Ballarin

Demo: Attributes

Isabelle — HOL Clemens Ballarin

We Have Learned so far...

Proof rules propositional logic
Proof rules for predicate calculus
Safe and unsafe rules

Forward proof

The Epsilon Operator

vV v v v v Y

Some automation (classical reasoner)

Isabelle — HOL Clemens Ballarin

	Types
	Preview: Proofs in Isabelle
	Natural Deduction
	Demo: Propositional Reasoning
	Demo: More Rules
	Quantifiers
	Demo: Quantifier Proofs
	Demo: Forward Proofs
	Epsilon and Automation Demo
	Demo: Attributes

