
Automatic Deduction — LVA 703522
Introduction to Isabelle

Clemens Ballarin

Universität Innsbruck

λ →

∀
=Isa

be
lle

β

α ISAR

Contents

I Intro & motivation, getting started with Isabelle

I Foundations & Principles
I Lambda Calculus
I Types & Classes
I Natural Deduction
I Term rewriting

I Proof & Specification Techniques
I Isar: mathematics style proofs
I Inductively defined sets, rule induction
I Datatypes, structural induction
I Recursive functions & code generation

Isabelle — ISAR Clemens Ballarin

ISAR

Isabelle — ISAR Clemens Ballarin

Apply scripts vs. Isar

Apply scripts What about. . .

I Unreadable I Elegance?
I Hard to maintain I Explaining deeper insights?
I Do not scale I Large developments?

No structure. Isar!

Isabelle — ISAR Clemens Ballarin

A Typical Isar Proof

proof
assume 〈formula0〉
have 〈formula1〉 by simp
...
have 〈formulan〉 by blast
show 〈formulan+1〉 by . . .

qed

proves 〈formula0〉 =⇒ 〈formulan+1〉

Analogous to assumes/shows in lemma statements.

Isabelle — ISAR Clemens Ballarin

Isar Core Syntax

〈proof〉 ::= proof [〈method〉] 〈statement〉∗ qed [〈method〉]
| by 〈method〉 [〈method〉]

〈method〉 ::= (simp . . .) | (blast . . .) | (rule . . .) | . . .

〈statement〉 ::= fix 〈variable〉+ (
∧

)
| assume 〈proposition〉 (=⇒)
| [from 〈name〉+]

(have | show) 〈proposition〉 〈proof〉
| next (separates subgoals)

〈proposition〉 ::= [〈name〉:] 〈formula〉

Isabelle — ISAR Clemens Ballarin

Proof and Qed

proof [〈method〉] 〈statement〉∗ qed [〈method〉]

lemma ”[[A;B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

I proof 〈method〉 applies method to the stated goal
I proof applies method rule
I proof - does nothing to the goal

Isabelle — ISAR Clemens Ballarin

How Do I Know What to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧B”
proof (rule conjI)

I 1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

I So we need: show ”A” and show ”B”

I We are allowed to assume A,
because A is in the assumptions of the proof state.

Isabelle — ISAR Clemens Ballarin

The Three Modes of Isar

I [prove]:
goal has been stated, proof needs to follow.

I [state]:
proof block has been openend or subgoal has been proved,
new from statement, goal statement or assumptions can
follow.

I [chain]:
from statement has been made, goal statement needs to
follow.

Isabelle — ISAR Clemens Ballarin

The Three Modes of Isar

I [prove]: goal has been stated

I [state]: proof block has been openend

I [chain]: from statement has been made

lemma ”[[A;B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove]

by assumption [state]
next [state]

. . .
qed [state]

Isabelle — ISAR Clemens Ballarin

Have

Can be used to make intermediate steps.

Example

lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed

Isabelle — ISAR Clemens Ballarin

Demo: Isar Proofs

Isabelle — ISAR Clemens Ballarin

Backward and Forward

Method rule can do both backward and forward reasoning.

Backward reasoning

have ”A ∧B” proof

I proof picks an intro rule.

I Conclusion of rule must unify with A ∧B

Forward reasoning

assume AB: ”A ∧B”
from AB have ”. . .” proof

I Now proof picks an elim rule.

I Triggered by chained facts (from).

I First assumption of rule must unify with AB.

Isabelle — ISAR Clemens Ballarin

Forward Reasoning

General case

from A1 . . . An have R proof

I First n assumptions of rule must unify with A1 . . . An.

I Conclusion of rule must unify with R.

Isabelle — ISAR Clemens Ballarin

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables.
(∼ parameters,

∧
)

obtain v1 . . . vn where 〈prop〉 〈proof〉

Introduces new variables together with property.

Isabelle — ISAR Clemens Ballarin

Demo

Isabelle — ISAR Clemens Ballarin

Nested Fixed Variables

Problem

fix x assumes ”A x” fix x assumes ”B x” 〈body〉
I Only second x is visible in 〈body〉
I Both A x and B x may appear in goal!

Solution
Name variants: x = x, x = xa

I In 〈body〉, x refers to xa.

I Outer x is hidden.

To see name variants in Proof General, set

Isabelle → Settings → Prems Limit → 0

Isabelle — ISAR Clemens Ballarin

Shortcuts

this = the previous fact (proved or assumed)

then = from this
with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

thus = then show
hence = then have

Isabelle — ISAR Clemens Ballarin

Moreover and Ultimately

have X1: P1 . . . have P1 . . .

have X2: P2 . . . moreover have P2 . . .
...

...
have Xn: Pn . . . moreover have Pn . . .

from X1 . . . Xn show . . . ultimately show . . .

Wastes lots of brain power
on names X1 . . . Xn.

Isabelle — ISAR Clemens Ballarin

General Case Distinctions

show 〈formula〉
proof -

have P1 ∨ P2 ∨ . . . ∨ Pn 〈proof〉
moreover { assume P1 . . . have ?thesis 〈proof〉 }
moreover { assume P2 . . . have ?thesis 〈proof〉 }

...
moreover { assume Pn . . . have ?thesis 〈proof〉 }
ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume Pi . . . have P 〈proof〉 } stands for Pi =⇒ P

Isabelle — ISAR Clemens Ballarin

Demo: moreover and
ultimately

Isabelle — ISAR Clemens Ballarin

Mixing Proof Styles

from A1 . . . An

have P
apply –
1. [[A1; . . . ;An]] =⇒ P
apply 〈method〉

...
apply 〈method〉
done

apply – turns chained facts into assumptions

Isabelle — ISAR Clemens Ballarin

Calculational Reasoning

Isabelle — ISAR Clemens Ballarin

The Goal
From group axioms

(x · y) · z = x · (y · z) 1 · x = x x−1 · x = 1

show

x · x−1 = 1 · (x · x−1)

= 1 · x · x−1

= (x−1)−1 · x−1 · x · x−1

= (x−1)−1 · (x−1 · x) · x−1

= (x−1)−1 · 1 · x−1

= (x−1)−1 · (1 · x−1)

= (x−1)−1 · x−1

= 1.

Isabelle — ISAR Clemens Ballarin

Can We Do This in Isabelle?

I Simplifier: too eager

I Manual: difficult in apply style

I Isar: with the methods we know, too verbose

Isabelle — ISAR Clemens Ballarin

Chains of Equations

The Problem

a = b = c = d

Shows a = d by transitivity of “=”.

Each step usually nontrivial (requires subproof).

Solution in Isar

I Keywords also and finally to delimit steps.

I “. . . ”: predefined schematic term variable, refers to right
hand side of last expression

I Automatic use of transitivity rules to connect steps.

Isabelle — ISAR Clemens Ballarin

also/finally

have ”t0 = t1” 〈proof〉 Calculation register
also t0 = t1
have ”. . . = t2” 〈proof〉
also t0 = t2

...
...

also t0 = tn−1

have ”. . . = tn” 〈proof〉
finally t0 = tn
show P

finally chaines fact t0 = tn into the proof.

Isabelle — ISAR Clemens Ballarin

More about also

I Works for all combinations of =, ≤ and <.

I Uses all transitivity rules; declared as [trans].

I To view all rules in Proof General:

Isabelle → Show me → Transitivity rules

Isabelle — ISAR Clemens Ballarin

Designing Transitivity Rules

Anatomy of a transitivity rule

I Usual form: plain transitivity [[l1 / r1; r1 / r2]] =⇒ l1 / r2

I More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples

I pure transitivity: [[a = b; b = c]] =⇒ a = c

I mixed: [[a ≤ b; b < c]] =⇒ a < c

I substitution: [[P a; a = b]] =⇒ P b

I antisymmetry: [[a < b; b < a]] =⇒ P

I monotonicity:
[[a = f b; b < c;

∧
x y. x < y =⇒ f x < f y]] =⇒ a < f c

Isabelle — ISAR Clemens Ballarin

Demo

Isabelle — ISAR Clemens Ballarin

What We Have Seen so far . . .

I Three modes of Isar: prove, state, chain

I Forward and backward reasoning with the rule method

I Accumulating nameless lemmas: moreover / ultimately

I Proving chains of equations: also / finally

Isabelle — ISAR Clemens Ballarin

	ISAR
	Demo: Isar Proofs
	Demo
	Demo: moreover and ultimately
	Calculational Reasoning
	Demo

