

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

GM (Institute of Computer Science @ UIBK) Organisation Complexity Theory

Schedule

Time and Place

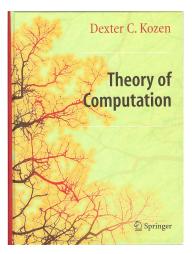
• Friday, 10:00-12:30, HS 10 (10 am sharp)

week 1	March 7	week 8	May 16
week 2	March 14	week 9	May 23
week 3	April 4	week 10	May 30
week 4	April 11	week 11	June 6
week 5	April 18	week 12	June 13
week 6	April 25	week 13	June 20
week 7	May 9	week 14	June 27
4		first exam	July 4

Literature & Online Material

Literature

Theory of Computation, Dexter C. Kozen, 426 pages, Springer, 1st edition (March 23, 2006) ISBN 1846282977



Online Material

Transparencies and homework will be available from IP starting with 138.232 after the lecture; exercises and solutions will be discussed during

the lecture

 GM (Institute of Computer Science @ UIBK)
 Complexity Theory

 Organisation
 Complexity Theory

Evaluation Some are More Equal

master students

very active participation do all the homework solve all exercises ace the exam

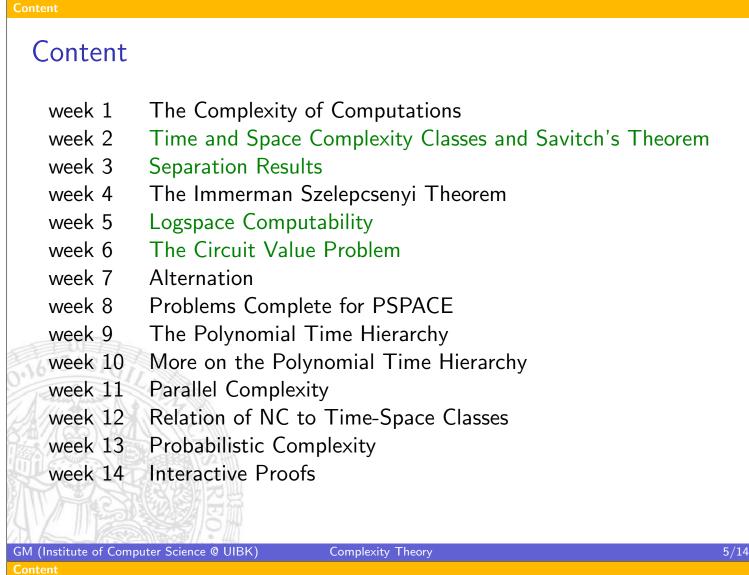
PhD students

remarkable participation scan the homework solve some interesting exercises ace the exam

Exercises & Exam

- officially there are no exercises as this course is labelled VO
- however, without exercises you'll simply fail the exam
- I'll give weekly exercises which will be discussed in the lecture

Any protest?



Overview and Goals

Kozen's book is based on a "one-semester course for first-year graduate students in computer science at Cornell"

Academic Ranking of World Universities

12

320

- 1 5 Massachusetts Inst Tech
- 2 2 Stanford Univ
- 3 26 Univ Illinois Urbana Champaign
- 4 3 Univ California Berkeley

Cornell Univ

Innsbruck Univ

5 21 Univ Michigan - Ann Arbor

16

 $(\hat{\boldsymbol{x}})$

BUT

- a major in CS at Cornell comprises 4 years ...
- and this course sits in the 2nd year of the master program
- you have already heard all the basis courses for this course:
 - formal methods
 - algorithms and data structure
 - formal language theory
 - logic
 - computability theory

[...] we make use of discrete mathematical structures, including graphs, tress, and dags, O(.) and o(.) notation; finite automata, regular expressions, pushdown automata, and context-free languages; and Turing machines, computability, undecidability, and diagonalisation [...]

Complexity Theory

GM (Institute of Computer Science @ UIBK) Content

Computational Complexity Theory

- define and study computational models and programming constructs
- understand their relative power and limitation
- classify computational problems in terms of their inherent complexity
- typically time or space complexity
- randomness, number of alternations, circuit size will also be of interest

prepared and studied by Church, Kleene, Post, Gödel, Turing, dots

Church's Thesis

all reasonable conceptions of computable functions capture our intuition of computable

Quantitative Church-Turing Thesis

tractable problems are those that are in the class of polytime decidable problems ${\bf P}$

(:)

G٨

Consider $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ such that

$$Q = \{s, s_a, s_b, s_c, s_d, s_e, t, r\}, \Sigma = \{0, 1\}, \Gamma = \Sigma \cup \{\dot{0}, \dot{0}, \dot{1}, \dot{1} \vdash, \sqcup\}$$

with δ defined as:

	$p \in Q$	$\gamma\in\Gamma$	$\delta_{M}(p,\gamma)$		$p\in Q$	$\gamma\in\Gamma$	$\delta_{M}(p,\gamma)$		
	S	\vdash	$(s_a, \vdash, \rightarrow)$		S _C	0	$(s_d, \acute{0}, \leftarrow)$		
	Sa	0	$(s_b, \grave{0}, ightarrow)$		S _C	1	$(s_d, 1, \leftarrow)$		
	Sa	1	$(s_b, \grave{1}, ightarrow)$		S _C	Ò	(r, Ò, -)		
	Sa	Ó	$(s_e, \acute{0}, \leftarrow)$		S _C	Ì	$(r, \dot{l}, -)$		
	Sa	ĺ	$(s_e, \acute{1}, \leftarrow)$		s _d	0	$(s_d, 0, \leftarrow)$		
1.73+	s _b	0	$(s_b, 0, ightarrow)$		s _d	1	$(s_d, 1, \leftarrow)$		
10-R	s _b	1	$(s_b,1, ightarrow)$		s _d	Ò	$(s_a, 0, \rightarrow)$		
Alla	s _b	7.0	(s_c,\sqcup,\leftarrow)		s _d	Ì	$(s_a, \dot{1}, \rightarrow)$		
	Sb	Ó	$(s_c, 0, \leftarrow)$		Se	Ò	$(s_e, 0, \leftarrow)$		
	s _b	Í	$(s_c, 1, \leftarrow)$		Se	Ì	$(s_e, \dot{1}, \leftarrow)$		
		國的空豐			Se	\vdash	(t,⊢,−)		
	Teros a								
M (Institut	A (Institute of Computer Science @ UIBK) Complexity Theory								
uring Machines									

One-Tape Turing Machine

A deterministic one-tape Turing machine is

$$\mathsf{M} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, \mathsf{s}, \mathsf{t}, \mathsf{r})$$

- **1** Q is a finite set of states
- **2** Σ is a finite input alphabet
- **3** Γ is a finite tape alphabet, $\Sigma \subseteq \Gamma$
- **4** $\sqcup \in \Gamma$ is the blank symbol
- **5** $\vdash \in \Gamma$ is the left endmarker

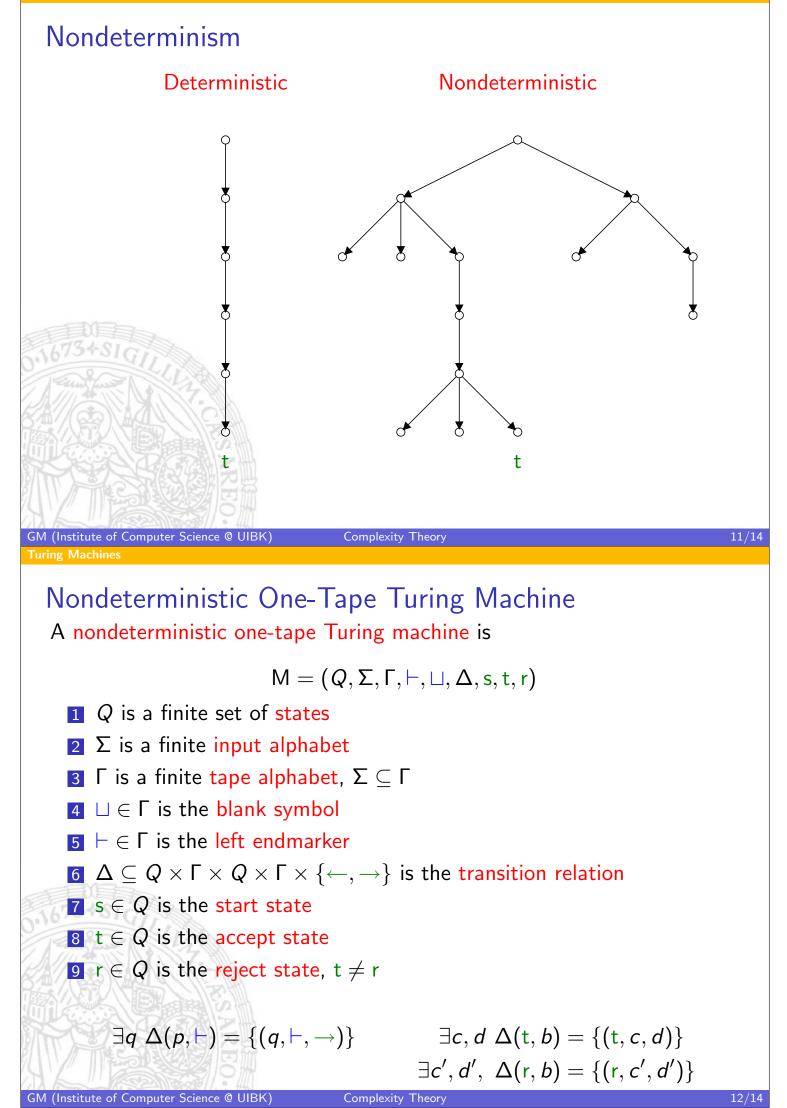
6
$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{\leftarrow, \rightarrow\}$$
 is the transition function

- **7** $s \in Q$ is the start state
- 8 $t \in Q$ is the accept state
- **9** $r \in Q$ is the reject state, $t \neq r$

$$\exists q \; \delta(p, \vdash) = (q, \vdash,
ightarrow)$$

$$\exists c, d \ \delta(t, b) = (t, c, d)$$
$$\exists c', d', \ \delta(r, b) = (r, c', d')$$

GM (Institute of Computer Science @ UIBK)



Theorem

Let $\Sigma = \{0, \mathbb{N}, \#\}$. The set of palindromes PAL := $\{z \in \Sigma^* \mid z = \text{rev } z\}$ requires $\Omega(n^2)$ time on a one-tape TM

Proof

- $\mathsf{PAL}_n := \{ x \ \#^{\frac{n}{2}} \ \mathsf{rev} \ x \ | \ x \in \{0,1\}^{\frac{n}{4}} \}$
- all elements of PAL_n are of length n
- $\forall x \in \text{PAL}_n$, $\forall 0 \leq i \leq n$ let $c_i(x)$ denote the sequence of states

 q_1, q_2, q_3, \ldots

 $\in M$, if position *i* is passed (from left or from right) while scanning x • $C(x) := \{c_i(x) \mid \frac{1}{4}n \leq i \leq \frac{3}{4}n\}$

Complexity Theory

Lemma
If
$$x, y \in PAL_n$$
 and $x \neq y$, then $C(x) \cap C(y) = \emptyset$

GM (Institute of Computer Science @ UIBK) Crossing Sequences

Theorem

If M runs in $o(\log \log n)$ space, then M accepts a regular set

Fact

 \exists a non-regular set accepted in O(log log n) space

 $\{\#b_k(0)\#b_k(1)\#b_k(2)\#\dots\#b_k(2^k-1)\# \mid k \ge 0\}$

 $b_k(n)$ is the k-bit (binary) representation of n

Proof

using similar crossing argument, but the following lemma

Lemma

If here is a fixed finite bound k on the amount of space used by M on accepted inputs, then L(M) is a regular set