

Complexity Theory

Georg Moser

Summer 2008

Institute of Computer Science @ UIBK

4 NUL			

GM (Institute of Computer Science @ UIBK)

Complexity Theory

1/14

GM (Institute of Computer Science @ UIBA

Complexity Theor

2/14

Organisation

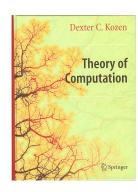
Schedule

Time and Place

Literature & Online Material

Literature

Theory of Computation, Dexter C. Kozen, 426 pages, Springer, 1st edition (March 23, 2006) ISBN 1846282977



Online Material

Transparencies and homework will be available from IP starting with 138.232 after the lecture; exercises and solutions will be discussed during the lecture

Evaluation Some are More Equal

master students

Friday, 10:00-12:30, HS 10 (10 am sharp)

week 1

week 2

week 3

week 4

week 5

week 6

week 7

March 7

March 14

April 4

April 11

April 18

April 25

May 9

very active participation do all the homework solve all exercises ace the exam

PhD students

remarkable participation scan the homework solve some interesting exercises ace the exam

May 16

May 23

May 30

June 6

June 13

June 20

June 27

July 4

week 8

week 9

week 10

week 11

week 12

week 13

week 14

first exam

Exercises & Exam

- officially there are no exercises as this course is labelled VO
- however, without exercises you'll simply fail the exam
- I'll give weekly exercises which will be discussed in the lecture

Any protest?

Content Content

Content

week 1

		-	-				
week 2	Time and	Space	Complexity	Classes	and	Savitch's	Theorem

- week 3 Separation Results
- week 4 The Immerman Szelepcsenyi Theorem

The Complexity of Computations

- week 5 Logspace Computability
- week 6 The Circuit Value Problem
- week 7 Alternation
- week 8 Problems Complete for PSPACE
- week 9 The Polynomial Time Hierarchy
- week 10 More on the Polynomial Time Hierarchy
- week 11 Parallel Complexity
- week 12 Relation of NC to Time-Space Classes
- week 13 Probabilistic Complexity
- week 14 Interactive Proofs

Overview and Goals

Kozen's book is based on a "one-semester course for first-year graduate students in computer science at Cornell'

Academic Ranking of World Universities

- 1 5 Massachusetts Inst Tech
- 2 2 Stanford Univ
- 3 26 Univ Illinois Urbana Champaign
- 4 3 Univ California Berkeley
- 5 21 Univ Michigan Ann Arbor
- 16 12 Cornell Univ
- 320 Innsbruck Univ

(3)

GM (Institute of Computer Science @ UIBK)

Complexity Theory

14 GM (Institute of Computer Science @ IIII

Complexity Theor

5/14

BUT

- a major in CS at Cornell comprises 4 years . . .
- and this course sits in the 2nd year of the master program
- you have already heard all the basis courses for this course:
 - formal methods
 - algorithms and data structure
 - formal language theory
 - logic
 - computability theory

Computational Complexity Theory

- define and study computational models and programming constructs
- understand their relative power and limitation
- classify computational problems in terms of their inherent complexity
- typically time or space complexity
- randomness, number of alternations, circuit size will also be of interest

prepared and studied by Church, Kleene, Post, Gödel, Turing, dots

Church's Thesis

all reasonable conceptions of computable functions capture our intuition of computable

Quantitative Church-Turing Thesis

tractable problems are those that are in the class of polytime decidable problems ${\bf P}$

[...] we make use of discrete mathematical structures, including graphs, tress, and dags, O(.) and o(.) notation; finite automata, regular expressions, pushdown automata, and context-free languages; and Turing machines, computability, undecidability, and diagonalisation [...]

Complexity Theory

 $Q = \{s, s_a, s_b, s_c, s_d, s_e, t, r\}, \ \Sigma = \{0, 1\}, \ \Gamma = \Sigma \cup \{0, 0, 1, 1 \vdash, \bot\}$

with δ defined as:

$p \in Q$	$\gamma \in \Gamma$	$\delta_{M}(p,\gamma)$
S	H	(s_a,\vdash,\rightarrow)
Sa	0	$(s_b, \grave{0}, \rightarrow)$
Sa	1	$(s_b, \grave{1}, ightarrow)$
Sa	Ó	$(s_e, 0, \leftarrow)$
Sa	ĺ	$(s_e, \acute{1}, \leftarrow)$
Sb	0	$(s_b,0, ightarrow)$
s _b	1	$(s_b,1, ightarrow)$
Sb	7. 1	$(s_c, \sqcup, \leftarrow)$
s_b	Ó	$(s_c, 0, \leftarrow)$
s _b	ĺ	$(s_c, 1, \leftarrow)$

$p \in Q$	$\gamma \in \Gamma$	$\delta_{M}(p,\gamma)$
S _C	0	$(s_d, 0, \leftarrow)$
s_c	1	$(s_d, 1, \leftarrow)$
s_c	Ò	$(r, \grave{0}, -)$
s_c	ì	$(r,\grave{1},-)$
Sd	0	$(s_d, 0, \leftarrow)$
Sd	1	$(s_d, 1, \leftarrow)$
Sd	Ò	$(s_a,\grave{0}, ightarrow)$
Sd	ì	$(s_a,\grave{1}, ightarrow)$
s_e	Ò	$(s_e,\grave{0},\leftarrow)$
s_e	ì	$(s_e,\grave{1},\leftarrow)$
s_e	\vdash	$(t, \vdash, -)$

One-Tape Turing Machine

A deterministic one-tape Turing machine is

$$M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$$

- \mathbf{I} Q is a finite set of states
- Σ is a finite input alphabet
- \blacksquare Γ is a finite tape alphabet, $\Sigma \subseteq \Gamma$
- \vdash ∈ Γ is the left endmarker
- **6** δ: $Q \times \Gamma \rightarrow Q \times \Gamma \times \{\leftarrow, \rightarrow\}$ is the transition function
- 7 $s \in Q$ is the start state
- $\mathbf{8}$ $\mathbf{t} \in Q$ is the accept state
- g $r \in Q$ is the reject state, $t \neq r$

$$\exists q \ \delta(p,\vdash) = (q,\vdash,\rightarrow) \qquad \qquad \exists c,d \ \delta(t,b) = (t,c,d)$$
$$\exists c',d', \ \delta(r,b) = (r,c',d')$$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

14 GM (Institute of Computer Science @ UIBh

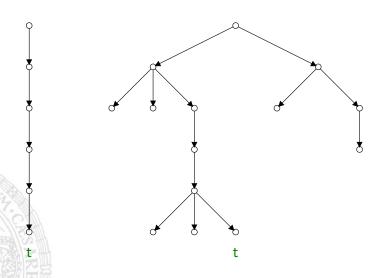
C I 's TI

10/1

Nondeterminism

Deterministic

Nondeterministic



Nondeterministic One-Tape Turing Machine

A nondeterministic one-tape Turing machine is

$$\mathsf{M} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \Delta, \mathsf{s}, \mathsf{t}, \mathsf{r})$$

- \mathbf{I} Q is a finite set of states
- Σ is a finite input alphabet
- \blacksquare Γ is a finite tape alphabet, $\Sigma \subseteq \Gamma$
- \vdash ∈ Γ is the left endmarker
- **6** Δ ⊆ $Q \times \Gamma \times Q \times \Gamma \times \{\leftarrow, \rightarrow\}$ is the transition relation
- 7 $s \in Q$ is the start state
- 8 $t \in Q$ is the accept state
- g $r \in Q$ is the reject state, $t \neq r$

$$\exists q \ \Delta(p, \vdash) = \{(q, \vdash, \rightarrow)\} \qquad \exists c, d \ \Delta(t, b) = \{(t, c, d)\}$$
$$\exists c', d', \ \Delta(r, b) = \{(r, c', d')\}$$

Theorem

Let $\Sigma = \{0, \mathbb{N}, \#\}$. The set of palindromes PAL := $\{z \in \Sigma^* \mid z = \text{rev } z\}$ requires $\Omega(n^2)$ time on a one-tape TM

Proof

- $PAL_n := \{x \#^{\frac{n}{2}} \text{ rev } x \mid x \in \{0,1\}^{\frac{n}{4}}\}$
- all elements of PAL_n are of length n
- $\forall x \in PAL_n$, $\forall 0 \le i \le n$ let $c_i(x)$ denote the sequence of states

$$q_1, q_2, q_3, \dots$$

 $\in M$, if position i is passed (from left or from right) while scanning x

•
$$C(x) := \{c_i(x) \mid \frac{1}{4}n \leqslant i \leqslant \frac{3}{4}n\}$$

Lemma

If
$$x, y \in PAL_n$$
 and $x \neq y$, then $C(x) \cap C(y) = \emptyset$

Theorem

If M runs in $o(\log \log n)$ space, then M accepts a regular set

Fact

 \exists a non-regular set accepted in $O(\log \log n)$ space

$$\{\#b_k(0)\#b_k(1)\#b_k(2)\#\dots\#b_k(2^k-1)\#\mid k\geqslant 0\}$$

 $b_k(n)$ is the k-bit (binary) representation of n

Proof

using similar crossing argument, but the following lemma

Lemma

If here is a fixed finite bound k on the amount of space used by M on accepted inputs, then L(M) is a regular set