

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

Outline

- Summary of Last Lecture: The Polynomial-Time Hierarchy
- Exercises
- More on the Polynomial-Time Hierarchy
- The Arithmetical Hierarchy

Definition of PH via ATMs

Definition Σ_k -machine

a Σ_k -machine is an ATM for which the computation path is dividable in separate sections on any input and

- 1 any section consists only of ∧- or ∨-configurations
- 2 at most k sections
- **3** the first consist of ∨-configurations

a Π_k -machine is defined by swapping \vee and \wedge

 Σ_0 , Π_0 are defined to be deterministic TMs

Definition

 \sum_{k}^{p} , \prod_{k}^{p}

$$\Sigma_k^{\mathbf{p}} := \{ \mathrm{L}(M) \mid M \text{ is polytime bounded } \Sigma_k\text{-machines} \}$$

$$\Pi_k^{\mathbf{p}} := \{ \mathrm{L}(M) \mid M \text{ is polytime bounded } \Pi_k\text{-machines} \}$$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

9/17

Definition

- an oracle machine is a TM M^B with an extra write-only tape, the oracle tape
- ullet M^B additionally has oracle query state and specific oracle answer states "yes" and "no"
- M^B writes y on oracle tape, oracle answers "yes" if $y \in B$ and "no" otherwise

Definition

let B be a language and C a complexity class

$$P^B := \{L(M) \mid M \text{ is a deterministic, polytime bounded or-acle machine with oracle } B\}$$

$$NP^B := \{L(M) \mid M \text{ is a nondeterministic, polytime bounded}$$

oracle machine with oracle $B\}$

$$\mathsf{P}^{\mathcal{C}} := \bigcup_{B \in \mathcal{C}} \mathsf{P}^{B}$$

$$\mathsf{NP}^\mathcal{C} := igcup_{B \in \mathcal{C}} \mathsf{NP}^B$$

Theorem

consider

$$NP \subseteq NP^{NP} \subseteq NP^{NP^{NP}} \dots$$

i.e., $\mathsf{NP_1} := \mathsf{NP}$ and $\mathsf{NP}_{k+1} := \mathsf{NP}^{\mathsf{NP}_k}$, then $\forall k \geqslant 1$: $\mathsf{NP}_k = \Sigma_k^\mathsf{p}$

define $\exists^t x \ \varphi(x) :\Leftrightarrow \exists x |y| \leqslant t \land \varphi(x)$ and $\forall^t x \ \varphi(x) :\Leftrightarrow \forall x |y| \leqslant t \rightarrow \varphi(x)$

Theorem

a language L is in $\Sigma_k^{\rm p}$ iff there is a deterministic polytime computable (k+1)-ary predicate R and a constant c such that

$$A = \{x \mid \exists^{|x|^c} y_1 \forall^{|x|^c} y_2 \exists^{|x|^c} y_3 \dots Q^{|x|^c} y_k R(x, y_1, \dots, y_k)\}$$

 $(Q\in\{\exists,\forall\})$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

11/17

Homework

- Miscellaneous Exercises 4
- 2 Miscellaneous Exercises 13
- 3 Miscellaneous Exercises 18
- 4 Homework 3.2
- 5 Homework 5.1

Theorem

$$\forall k \geqslant 1$$
: $NP_k = \Sigma_k^p$

Proof

the proof proceeds by induction on k; the base case is easy:

$$\mathsf{NP}_1 = \mathsf{NP} = \Sigma_1^\mathsf{p}$$

employing the induction hypothesis, it remains to show $\mathsf{NP}^{\Sigma_k^\mathsf{p}} = \Sigma_{k+1}^\mathsf{p}$

$$\mathsf{NP}^{\mathbf{\Sigma}_k^\mathsf{p}} \supseteq \mathbf{\Sigma}_{k+1}^\mathsf{p}$$

- $\exists \; \Sigma_{k+1}$ -machine M running in time n^c , $A \in \mathrm{L}(M)$
- we need to show $A \in \mathsf{NP}^{\Sigma_k^\mathsf{p}}$
- ullet wlog assume all configurations of M are representable as string in Δ^{n^c}
- $D := \{ \alpha \mid \alpha \text{ is an } \land \text{-configuration of } M, \ |\alpha| = n^c, \text{ and } \alpha \text{ leads to acceptance via a } \Pi_k \text{ computation in time at most } n^c \}$
- M accepts x iff \exists computation leading via \lor -states into some $\alpha \in D$
- A is accepted by an NTM with oracle $\sim D \in \Sigma_k^p$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

13/17

fore on the Polynomial-Time Hierarchy

$$\mathsf{NP}^{\Sigma_k^\mathsf{p}} \subseteq \Sigma_{k+1}^\mathsf{p}$$

- \exists NTM n^c -time bounded with oracle $B \in \Sigma_k^p$, A = L(M)
- construct Σ_{k+1} -machine N:
 - 1 on input x, N simulates M
 - 2 every time M wants to ask oracle on y, N remembers y and spawns processes to guess answer
 - 3 if M rejects, N rejects
 - 4 if M accepts, correctness of guesses need to be verified
- this part of N is a Σ_1 -machine
- each leaf of N's computation tree collects positive guesses y_1, \ldots, y_m

negative guesses
$$z_1, \ldots, z_\ell$$

∈ B? *∉ B*?

- we extend N by guessing strings w_1, \ldots, w_m
- used in the first section of the Σ_k -TM deciding $y_i \in B$ the subsequent \wedge -state forks $m + \ell$ processes
- the subsequent \land -state forks $m + \ell$ processes each process either checking $y_i \in B$ or $z_i \notin B$
- these processes are Π_{k-1} and Π_k respectively

Definition

- a set A is recursive enumerable in B if $A = L(M^B)$ for some oracle TM M^B
- A is recursive in B if $A = L(M^B)$ and M^B is a total oracle TM
- $A \leq_T B$, if A recursive in B

Turing reducibility

Definition

Arithmetical Hierarchy

we fix a binary alphabet $\Sigma = \{0,1\}$

$$\begin{split} & \boldsymbol{\Sigma_{1}^{0}} := \{\text{r.e. sets}\} & \boldsymbol{\Sigma_{n+1}^{0}} := \{\text{L}(M^B) \mid B \in \boldsymbol{\Sigma_{n}^{0}}\} \\ & \boldsymbol{\Delta_{1}^{0}} := \{\text{recursive sets}\} & \boldsymbol{\Delta_{n+1}^{0}} := \{\text{L}(M^B) \mid B \in \boldsymbol{\Sigma_{n}^{0}}, M^B \text{ total}\} \\ & \boldsymbol{\Pi_{n}^{0}} := \{\sim L \mid L \in \boldsymbol{\Sigma_{n}^{0}}\} \end{split}$$

Example

$$\mathsf{HP} = \{ M \# x \mid \exists t \; M \; \mathsf{halts} \; \mathsf{on} \; x \; \mathsf{in} \; t \; \mathsf{steps} \} \in \Sigma^0_1$$

$$\mathsf{MP} = \{ M \# x \mid \exists t \; M \; \mathsf{accepts} \; x \; \mathsf{in} \; t \; \mathsf{steps} \} \in \Sigma^0_1$$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

15/17

The Arithmetical Hierarch

Theorem

ullet a set A is in Σ^0_n iff \exists a decidable (n+1)-ary predicate R such that

$$A = \{x \mid \exists y_1 \forall y_2 \dots Qy_n R(x, y_1, \dots, y_n)\}$$

 $(Q \in \{\exists, \forall\})$

• a set A is in Π_n^0 iff \exists a decidable (n+1)-ary predicate R such that

$$A = \{x \mid \forall y_1 \exists y_2 \dots Q y_n R(x, y_1, \dots, y_n)\}$$

 $(Q \in \{\exists, \forall\})$

Definition

• let $A \subseteq \Sigma^*$, $B \subseteq \Gamma^*$, define $A \leq_m B$ if \exists total recursive function $\sigma \colon \Sigma^* \to \Gamma^*$ such that $\forall \ x \in \Sigma^*$

$$x \in A \Leftrightarrow \sigma(x) \in B$$

- a set A is r.e.-hard if every r.e. set \leq_m -reduces to A
- if A is r.e. and r.e.-hard, then A is r.e.-complete
- let $\mathcal C$ be a class of sets, we say A is \leqslant_m -complete for $\mathcal C$ if $A \in \mathcal C$ and A is \leqslant_m -hard

GM (Institute of Computer Science @ UIBK)

Complexity Theory

Example

- HP is \leqslant_m -complete for Σ^0_1
- MP is \leqslant_m -complete for Σ^0_1
- FIN = $\{M \mid \mathrm{L}(M) \text{ is finite}\}\$ is \leqslant_m -complete for Σ^0_2

Lemma

FIN is \leqslant_m -complete for Σ^0_2

Proof

on blackboard

GM (Institute of Computer Science @ UIBK)

Complexity Theory

17/17