Outline

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

Definition of PH via ATMs

Definition
Σ_{k}-machine
a Σ_{k}-machine is an ATM for which the computation path is dividable in separate sections on any input and
1 any section consists only of \wedge - or \vee-configurations
2 at most k sections
3 the first consist of \vee-configurations
a Π_{k}-machine is defined by swapping \vee and \wedge
Σ_{0}, Π_{0} are defined to be deterministic TMs
Definition

\[\)| $\Sigma_{k}^{p}:=\left\{\mathrm{L}(M) \mid M \text { is polytime bounded } \Sigma_{k} \text {-machines }\right\}$ | $\Sigma_{k}^{\mathrm{p}}, \Pi_{k}^{\mathrm{p}}$ |
| :--- | :--- |
| $\Pi_{k}^{\mathrm{p}}:=\left\{\mathrm{L}(M) \mid M \text { is polytime bounded } \Pi_{k} \text {-machines }\right\}$ | |

\]

- Summary of Last Lecture: The Polynomial-Time Hierarchy
- Exercises
- More on the Polynomial-Time Hierarchy
- The Arithmetical Hierarchy

Definition

- an oracle machine is a TM M^{B} with an extra write-only tape, the oracle tape
- M^{B} additionally has oracle query state and specific oracle answer states "yes" and "no"
- M^{B} writes y on oracle tape, oracle answers "yes" if $y \in B$ and "no" otherwise

Definition
let B be a language and \mathcal{C} a complexity class

$$
\left.\begin{array}{rl}
P^{B} & :=\{L(M) \mid M \text { is a deterministic, polytime bounded or- } \\
\text { acle machine with oracle } B\}
\end{array}\right\}
$$

Theorem
consider

$$
N P \subseteq N P^{N P} \subseteq N P^{N P^{N P}} \ldots
$$

i.e., $N P_{1}:=N P$ and $N P_{k+1}:=N P^{N P_{k}}$, then $\forall k \geqslant 1: N P_{k}=\Sigma_{k}^{p}$
define $\exists^{t} x \varphi(x): \Leftrightarrow \exists x|y| \leqslant t \wedge \varphi(x)$ and $\forall^{t} x \varphi(x): \Leftrightarrow \forall x|y| \leqslant t \rightarrow \varphi(x)$
1 Miscellaneous Exercises 4
2. Miscellaneous Exercises 13

3 Miscellaneous Exercises 18
4 Homework 3.2
TheoremHomework 5.1
a language L is in Σ_{k}^{p} iff there is a deterministic polytime computable

Homework

 ($k+1$)-ary predicate R and a constant c such that$$
A=\left\{x \mid \exists \exists^{|x|^{c}} y_{1} \forall^{|x|^{c}} y_{2} \exists^{|x|^{c}} y_{3} \ldots Q^{|x|^{c}} y_{k} R\left(x, y_{1}, \ldots, y_{k}\right)\right.
$$

$(Q \in\{\exists, \forall\})$

Theorem

$\forall k \geqslant 1: \mathrm{NP}_{k}=\Sigma_{k}^{\mathrm{p}}$
Proof
the proof proceeds by induction on k; the base case is easy:

$$
N P_{1}=N P=\Sigma_{1}^{p}
$$

employing the induction hypothesis, it remains to show $\mathrm{NP}^{\Sigma_{k}^{\mathrm{p}}}=\Sigma_{k+1}^{\mathrm{p}}$
$N P^{\Sigma_{k}^{p}} \supseteq \Sigma_{k+1}^{\mathrm{p}}$

- $\exists \Sigma_{k+1}$-machine M running in time $n^{c}, A \in \mathrm{~L}(M)$
- we need to show $A \in \mathrm{NP}^{\Sigma_{k}^{p}}$
- wlog assume all configurations of M are representable as string in $\Delta^{n^{c}}$
- $D:=\left\{\alpha \mid \alpha\right.$ is an \wedge-configuration of $M,|\alpha|=n^{c}$, and α leads to acceptance via a Π_{k} computation in time at most $\left.n^{c}\right\}$

$N P^{\Sigma_{k}^{p}} \subseteq \Sigma_{k+1}^{\mathrm{p}}$

- \exists NTM n^{c}-time bounded with oracle $B \in \Sigma_{k}^{\mathrm{p}}, A=\mathrm{L}(M)$
- construct Σ_{k+1}-machine N :

1 on input x, N simulates M
2 every time M wants to ask oracle on y, N remembers y and spawns processes to guess answer
3 if M rejects, N rejects
4 if M accepts, correctness of guesses need to be verified

- this part of N is a Σ_{1}-machine
- each leaf of N 's computation tree collects
positive guesses y_{1}, \ldots, y_{m}
negative guesses z_{1}, \ldots, z_{ℓ}
$\notin B$?
- we extend N by guessing strings w_{1}, \ldots, w_{m} used in the first section of the Σ_{k}-TM deciding $y_{i} \in B$
- the subsequent \wedge-state forks $m+\ell$ processes each process either checking $y_{i} \in B$ or $z_{j} \notin B$
- M accepts x iff \exists computation leading via V-states into some $\alpha \in D$
- A is accepted by an NTM with oracle $\sim D \in \Sigma_{k}^{p}$
- these processes are Π_{k-1} and Π_{k} respectively

Definition

- a set A is recursive enumerable in B if $A=\mathrm{L}\left(M^{B}\right)$ for some oracle TM M^{B}
- A is recursive in B if $A=\mathrm{L}\left(M^{B}\right)$ and M^{B} is a total oracle TM
- $A \leqslant_{T} B$, if A recursive in B

Turing reducibility
Definition
Arithmetical Hierarchy
we fix a binary alphabet $\Sigma=\{0,1\}$

$$
\begin{array}{ll}
\Sigma_{1}^{0}:=\{\text { r.e. sets }\} & \Sigma_{n+1}^{0}:=\left\{\mathrm{L}\left(M^{B}\right) \mid B \in \Sigma_{n}^{0}\right\} \\
\Delta_{1}^{0}:=\{\text { recursive sets }\} & \Delta_{n+1}^{0}:=\left\{\mathrm{L}\left(M^{B}\right) \mid B \in \Sigma_{n}^{0}, M^{B} \text { total }\right\} \\
\Pi_{n}^{0}:=\left\{\sim L \mid L \in \Sigma_{n}^{0}\right\} &
\end{array}
$$

Example

$$
\begin{aligned}
\mathrm{HP} & =\{M \# x \mid \exists t M \text { halts on } x \text { in } t \text { steps }\} \in \Sigma_{1}^{0} \\
\mathrm{MP} & =\{M \# x \mid \exists t M \text { accepts } x \text { in } t \text { steps }\} \in \Sigma_{1}^{0}
\end{aligned}
$$

Theorem

- a set A is in Σ_{n}^{0} iff \exists a decidable $(n+1)$-ary predicate R such that

$$
A=\left\{x \mid \exists y_{1} \forall y_{2} \ldots Q y_{n} R\left(x, y_{1}, \ldots, y_{n}\right)\right.
$$

$(Q \in\{\exists, \forall\})$

- a set A is in Π_{n}^{0} iff \exists a decidable ($n+1$)-ary predicate R such that

$$
A=\left\{x \mid \forall y_{1} \exists y_{2} \ldots Q y_{n} R\left(x, y_{1}, \ldots, y_{n}\right)\right.
$$

$(Q \in\{\exists, \forall\})$

Definition

- let $A \subseteq \Sigma^{*}, B \subseteq \Gamma^{*}$, define $A \leqslant_{m} B$ if \exists total recursive function $\sigma: \Sigma^{*} \rightarrow \Gamma^{*}$ such that $\forall x \in \Sigma^{*}$

$$
x \in A \Leftrightarrow \sigma(x) \in B
$$

- a set A is r.e.-hard if every r.e. set \leqslant_{m}-reduces to A
- if A is r.e. and r.e.-hard, then A is r.e.-complete
- let \mathcal{C} be a class of sets, we say A is \leqslant_{m}-complete for \mathcal{C} if $A \in \mathcal{C}$ and A is \leqslant_{m}-hard

Example

- HP is \leqslant_{m}-complete for Σ_{1}^{0}
- MP is \leqslant_{m}-complete for Σ_{1}^{0}
- $\operatorname{FIN}=\{M \mid L(M)$ is finite $\}$ is \leqslant_{m}-complete for Σ_{2}^{0}

Lemma

FIN is \leqslant_{m}-complete for Σ_{2}^{0}
Proof
on blackboard

