gic	Outline
Complexity Theory Georg Moser Institute of Computer Science @ UIBK Summer 2008	 Summary of Last Lecture: The Polynomial-Time Hierarchy Exercises More on the Polynomial-Time Hierarchy The Arithmetical Hierarchy
	GM (Institute of Computer Science @ UIBK) Complexity Theory 8/1
Definition of PH via ATMsDefinition Σ_k -machinea Σ_k -machine is an ATM for which the computation path is dividable inseparate sections on any input and1 any section consists only of \wedge - or \vee -configurations2 at most k sections3 the first consist of \vee -configurationsa Π_k -machine is defined by swapping \vee and \wedge Σ_0 , Π_0 are defined to be deterministic TMsDefinition $\Sigma_k^p := {L(M) M is polytime bounded \Sigma_k-machines}\Pi_k^p := {L(M) M is polytime bounded \Pi_k-machines}$	Definition• an oracle machine is a TM M^B with an extra write-only tape, the oracle tape• M^B additionally has oracle query state and specific oracle answer states "yes" and "no"• M^B writes y on oracle tape, oracle answers "yes" if $y \in B$ and "no" otherwiseDefinition let B be a language and C a complexity class $P^B := \{L(M) \mid M \text{ is a deterministic, polytime bounded or-acle machine with oracle B \}NP^B := \{L(M) \mid M \text{ is a nondeterministic, polytime boundedoracle machine with oracle B \}P^C := \bigcup_{B \in C} P^BNP^C := \bigcup_{B \in C} NP^B$

Complexity Theory

	Homework
Theorem consider $NP \subseteq NP^{NP} \subseteq NP^{NP^{NP}} \dots$ i.e., NP ₁ := NP and NP _{k+1} := NP ^{NP_k} , then $\forall k \ge 1$: NP _k = Σ_k^p define $\exists^t x \ \varphi(x) :\Leftrightarrow \exists x y \le t \land \varphi(x)$ and $\forall^t x \ \varphi(x) :\Leftrightarrow \forall x y \le t \rightarrow \varphi(x)$ Theorem a language <i>L</i> is in Σ_k^p iff there is a deterministic polytime computable (k + 1)-ary predicate <i>R</i> and a constant <i>c</i> such that $A = \{x \mid \exists^{ x ^c} y_1 \forall^{ x ^c} y_2 \exists^{ x ^c} y_3 \dots Q^{ x ^c} y_k R(x, y_1, \dots, y_k)$	 Miscellaneous Exercises 4 Miscellaneous Exercises 13 Miscellaneous Exercises 18 Homework 3.2 Homework 5.1
$(Q \in \{\exists, \forall\})$ GM (Institute of Computer Science @ UIBK) Complexity Theory 11/17	GM (Institute of Computer Science @ UIBK) Complexity Theory 12/17
More on the Polynomial-Time Hierarchy Theorem $\forall k \ge 1$: NP _k = Σ_k^p Proof	Note on the Polynomial-Time Hierarchy $NP^{\sum_{k}^{p}} \subseteq \sum_{k+1}^{p}$ • \exists NTM n^{c} -time bounded with oracle $B \in \sum_{k}^{p}$, $A = L(M)$ • construct \sum_{k+1} -machine N :
the proof proceeds by induction on k ; the base case is easy: $NP_{1} = NP = \Sigma_{1}^{p}$ employing the induction hypothesis, it remains to show $NP^{\Sigma_{k}^{p}} = \Sigma_{k+1}^{p}$ $NP^{\Sigma_{k}^{p}} \supseteq \Sigma_{k+1}^{p}$ • $\exists \Sigma_{k+1}$ -machine M running in time n^{c} , $A \in L(M)$ • we need to show $A \in NP^{\Sigma_{k}^{p}}$ • wlog assume all configurations of M are representable as string in $\Delta^{n^{c}}$ • $D := \{\alpha \mid \alpha \text{ is an } \Lambda\text{-configuration of } M, \mid \alpha \mid = n^{c}, \text{ and } \alpha \text{ leads to} acceptance via a } \Pi_{k} \text{ computation in time at most } n^{c} \}$ • M accepts x iff \exists computation leading via \vee -states into some $\alpha \in D$ • A is accepted by an NTM with oracle $\sim D \in \Sigma_{k}^{p}$	 i on input x, N simulates M i every time M wants to ask oracle on y, N remembers y and spawns processes to guess answer if M rejects, N rejects if M accepts, correctness of guesses need to be verified this part of N is a Σ₁-machine each leaf of N's computation tree collects positive guesses y₁,, y_m ∈ B? negative guesses z₁,, z_ℓ ∉ B? we extend N by guessing strings w₁,, w_m used in the first section of the Σ_k-TM deciding y_i∈B the subsequent ∧-state forks m + ℓ processes each processes are Π_{k-1} and Π_k respectively

Definition• a set A is recursive enumerable in B if $A = L(M^B)$ for some oracle TM M^B • A is recursive in B if $A = L(M^B)$ and M^B is a total oracle TM• $A \leq_T B$, if A recursive in BTuring reducibilityDefinitionwe fix a binary alphabet $\Sigma = \{0, 1\}$ $\Sigma_1^0 := \{r.e. \text{ sets}\}$ $\Delta_{n+1}^0 := \{L(M^B) \mid B \in \Sigma_n^0\}$ $\Delta_1^0 := \{\text{recursive sets}\}$ $\Delta_{n+1}^0 := \{L(M^B) \mid B \in \Sigma_n^0, M^B \text{ total}\}$ $\Pi_n^0 := \{\sim L \mid L \in \Sigma_n^0\}$ ExampleHP = $\{M\#x \mid \exists t \ M \text{ halts on } x \text{ in } t \text{ steps}\} \in \Sigma_1^0$ $MP = \{M\#x \mid \exists t \ M \text{ accepts } x \text{ in } t \text{ steps}\} \in \Sigma_1^0$	Theorem • a set A is in Σ_n^0 iff \exists a decidable $(n + 1)$ -ary predicate R such that $A = \{x \mid \exists y_1 \forall y_2 \dots Qy_n R(x, y_1, \dots, y_n) \\ (Q \in \{\exists, \forall\})$ • a set A is in Π_n^0 iff \exists a decidable $(n + 1)$ -ary predicate R such that $A = \{x \mid \forall y_1 \exists y_2 \dots Qy_n R(x, y_1, \dots, y_n) \\ (Q \in \{\exists, \forall\})$ Definition • let $A \subseteq \Sigma^*$, $B \subseteq \Gamma^*$, define $A \leqslant_m B$ if \exists total recursive function $\sigma \colon \Sigma^* \to \Gamma^*$ such that $\forall x \in \Sigma^*$ $x \in A \Leftrightarrow \sigma(x) \in B$ • a set A is r.ehard if every r.e. set \leqslant_m -reduces to A • if A is r.e. and r.ehard, then A is r.ecomplete • let C be a class of sets, we say A is \leqslant_m -complete for C if $A \in C$ and A is \leqslant_m -hard
	if $A \in \mathcal{C}$ and A is \leq_m -hard
Example • HP is \leq_m -complete for Σ_1^0 • MP is \leq_m -complete for Σ_1^0 • FIN = { $M \mid L(M)$ is finite} is \leq_m -complete for Σ_2^0 Lemma	
FIN is \leq_m -complete for Σ_2^0 Proof on blackboard (Institute of Computer Science 0.110K) Complexity Theory 17/17	